Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}=18
Add 18 to both sides. Anything plus zero gives itself.
x^{2}=\frac{18}{12}
Divide both sides by 12.
x^{2}=\frac{3}{2}
Reduce the fraction \frac{18}{12} to lowest terms by extracting and canceling out 6.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
Take the square root of both sides of the equation.
12x^{2}-18=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 12\left(-18\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 0 for b, and -18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 12\left(-18\right)}}{2\times 12}
Square 0.
x=\frac{0±\sqrt{-48\left(-18\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{0±\sqrt{864}}{2\times 12}
Multiply -48 times -18.
x=\frac{0±12\sqrt{6}}{2\times 12}
Take the square root of 864.
x=\frac{0±12\sqrt{6}}{24}
Multiply 2 times 12.
x=\frac{\sqrt{6}}{2}
Now solve the equation x=\frac{0±12\sqrt{6}}{24} when ± is plus.
x=-\frac{\sqrt{6}}{2}
Now solve the equation x=\frac{0±12\sqrt{6}}{24} when ± is minus.
x=\frac{\sqrt{6}}{2} x=-\frac{\sqrt{6}}{2}
The equation is now solved.