Evaluate
-3
Factor
-3
Graph
Share
Copied to clipboard
\left(12x^{2}\right)^{1}\times \frac{1}{-4x^{2}}
Use the rules of exponents to simplify the expression.
12^{1}\left(x^{2}\right)^{1}\times \frac{1}{-4}\times \frac{1}{x^{2}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
12^{1}\times \frac{1}{-4}\left(x^{2}\right)^{1}\times \frac{1}{x^{2}}
Use the Commutative Property of Multiplication.
12^{1}\times \frac{1}{-4}x^{2}x^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
12^{1}\times \frac{1}{-4}x^{2}x^{-2}
Multiply 2 times -1.
12^{1}\times \frac{1}{-4}x^{2-2}
To multiply powers of the same base, add their exponents.
12^{1}\times \frac{1}{-4}x^{0}
Add the exponents 2 and -2.
12\times \frac{1}{-4}x^{0}
Raise 12 to the power 1.
12\left(-\frac{1}{4}\right)x^{0}
Raise -4 to the power -1.
-3x^{0}
Multiply 12 times -\frac{1}{4}.
-3
For any term t except 0, t^{0}=1.
\frac{12^{1}x^{2}}{\left(-4\right)^{1}x^{2}}
Use the rules of exponents to simplify the expression.
\frac{12^{1}x^{2-2}}{\left(-4\right)^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{12^{1}x^{0}}{\left(-4\right)^{1}}
Subtract 2 from 2.
\frac{12^{1}}{\left(-4\right)^{1}}
For any number a except 0, a^{0}=1.
-3
Divide 12 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}