Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x^{2}+8x-3+4x+5
Combine 12x^{2} and -7x^{2} to get 5x^{2}.
5x^{2}+12x-3+5
Combine 8x and 4x to get 12x.
5x^{2}+12x+2
Add -3 and 5 to get 2.
factor(5x^{2}+8x-3+4x+5)
Combine 12x^{2} and -7x^{2} to get 5x^{2}.
factor(5x^{2}+12x-3+5)
Combine 8x and 4x to get 12x.
factor(5x^{2}+12x+2)
Add -3 and 5 to get 2.
5x^{2}+12x+2=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\times 5\times 2}}{2\times 5}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\times 5\times 2}}{2\times 5}
Square 12.
x=\frac{-12±\sqrt{144-20\times 2}}{2\times 5}
Multiply -4 times 5.
x=\frac{-12±\sqrt{144-40}}{2\times 5}
Multiply -20 times 2.
x=\frac{-12±\sqrt{104}}{2\times 5}
Add 144 to -40.
x=\frac{-12±2\sqrt{26}}{2\times 5}
Take the square root of 104.
x=\frac{-12±2\sqrt{26}}{10}
Multiply 2 times 5.
x=\frac{2\sqrt{26}-12}{10}
Now solve the equation x=\frac{-12±2\sqrt{26}}{10} when ± is plus. Add -12 to 2\sqrt{26}.
x=\frac{\sqrt{26}-6}{5}
Divide -12+2\sqrt{26} by 10.
x=\frac{-2\sqrt{26}-12}{10}
Now solve the equation x=\frac{-12±2\sqrt{26}}{10} when ± is minus. Subtract 2\sqrt{26} from -12.
x=\frac{-\sqrt{26}-6}{5}
Divide -12-2\sqrt{26} by 10.
5x^{2}+12x+2=5\left(x-\frac{\sqrt{26}-6}{5}\right)\left(x-\frac{-\sqrt{26}-6}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-6+\sqrt{26}}{5} for x_{1} and \frac{-6-\sqrt{26}}{5} for x_{2}.