Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}+2x-1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\times 12\left(-1\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{4-4\times 12\left(-1\right)}}{2\times 12}
Square 2.
x=\frac{-2±\sqrt{4-48\left(-1\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-2±\sqrt{4+48}}{2\times 12}
Multiply -48 times -1.
x=\frac{-2±\sqrt{52}}{2\times 12}
Add 4 to 48.
x=\frac{-2±2\sqrt{13}}{2\times 12}
Take the square root of 52.
x=\frac{-2±2\sqrt{13}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{13}-2}{24}
Now solve the equation x=\frac{-2±2\sqrt{13}}{24} when ± is plus. Add -2 to 2\sqrt{13}.
x=\frac{\sqrt{13}-1}{12}
Divide -2+2\sqrt{13} by 24.
x=\frac{-2\sqrt{13}-2}{24}
Now solve the equation x=\frac{-2±2\sqrt{13}}{24} when ± is minus. Subtract 2\sqrt{13} from -2.
x=\frac{-\sqrt{13}-1}{12}
Divide -2-2\sqrt{13} by 24.
12x^{2}+2x-1=12\left(x-\frac{\sqrt{13}-1}{12}\right)\left(x-\frac{-\sqrt{13}-1}{12}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-1+\sqrt{13}}{12} for x_{1} and \frac{-1-\sqrt{13}}{12} for x_{2}.
x ^ 2 +\frac{1}{6}x -\frac{1}{12} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = -\frac{1}{6} rs = -\frac{1}{12}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{1}{12} - u s = -\frac{1}{12} + u
Two numbers r and s sum up to -\frac{1}{6} exactly when the average of the two numbers is \frac{1}{2}*-\frac{1}{6} = -\frac{1}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{1}{12} - u) (-\frac{1}{12} + u) = -\frac{1}{12}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1}{12}
\frac{1}{144} - u^2 = -\frac{1}{12}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1}{12}-\frac{1}{144} = -\frac{13}{144}
Simplify the expression by subtracting \frac{1}{144} on both sides
u^2 = \frac{13}{144} u = \pm\sqrt{\frac{13}{144}} = \pm \frac{\sqrt{13}}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{1}{12} - \frac{\sqrt{13}}{12} = -0.384 s = -\frac{1}{12} + \frac{\sqrt{13}}{12} = 0.217
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.