Solve for x
x = \frac{\sqrt{241} - 1}{12} \approx 1.210347891
x=\frac{-\sqrt{241}-1}{12}\approx -1.377014558
Graph
Share
Copied to clipboard
12x^{2}+2x=20
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12x^{2}+2x-20=20-20
Subtract 20 from both sides of the equation.
12x^{2}+2x-20=0
Subtracting 20 from itself leaves 0.
x=\frac{-2±\sqrt{2^{2}-4\times 12\left(-20\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, 2 for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 12\left(-20\right)}}{2\times 12}
Square 2.
x=\frac{-2±\sqrt{4-48\left(-20\right)}}{2\times 12}
Multiply -4 times 12.
x=\frac{-2±\sqrt{4+960}}{2\times 12}
Multiply -48 times -20.
x=\frac{-2±\sqrt{964}}{2\times 12}
Add 4 to 960.
x=\frac{-2±2\sqrt{241}}{2\times 12}
Take the square root of 964.
x=\frac{-2±2\sqrt{241}}{24}
Multiply 2 times 12.
x=\frac{2\sqrt{241}-2}{24}
Now solve the equation x=\frac{-2±2\sqrt{241}}{24} when ± is plus. Add -2 to 2\sqrt{241}.
x=\frac{\sqrt{241}-1}{12}
Divide -2+2\sqrt{241} by 24.
x=\frac{-2\sqrt{241}-2}{24}
Now solve the equation x=\frac{-2±2\sqrt{241}}{24} when ± is minus. Subtract 2\sqrt{241} from -2.
x=\frac{-\sqrt{241}-1}{12}
Divide -2-2\sqrt{241} by 24.
x=\frac{\sqrt{241}-1}{12} x=\frac{-\sqrt{241}-1}{12}
The equation is now solved.
12x^{2}+2x=20
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12x^{2}+2x}{12}=\frac{20}{12}
Divide both sides by 12.
x^{2}+\frac{2}{12}x=\frac{20}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}+\frac{1}{6}x=\frac{20}{12}
Reduce the fraction \frac{2}{12} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{1}{6}x=\frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{5}{3}+\left(\frac{1}{12}\right)^{2}
Divide \frac{1}{6}, the coefficient of the x term, by 2 to get \frac{1}{12}. Then add the square of \frac{1}{12} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{5}{3}+\frac{1}{144}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{241}{144}
Add \frac{5}{3} to \frac{1}{144} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{12}\right)^{2}=\frac{241}{144}
Factor x^{2}+\frac{1}{6}x+\frac{1}{144}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{241}{144}}
Take the square root of both sides of the equation.
x+\frac{1}{12}=\frac{\sqrt{241}}{12} x+\frac{1}{12}=-\frac{\sqrt{241}}{12}
Simplify.
x=\frac{\sqrt{241}-1}{12} x=\frac{-\sqrt{241}-1}{12}
Subtract \frac{1}{12} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}