Solve for x
x=\frac{\sqrt{6}}{2}-1\approx 0.224744871
x=-\frac{\sqrt{6}}{2}-1\approx -2.224744871
Graph
Share
Copied to clipboard
6x^{2}+12x-3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-3\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 12 for b, and -3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\times 6\left(-3\right)}}{2\times 6}
Square 12.
x=\frac{-12±\sqrt{144-24\left(-3\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-12±\sqrt{144+72}}{2\times 6}
Multiply -24 times -3.
x=\frac{-12±\sqrt{216}}{2\times 6}
Add 144 to 72.
x=\frac{-12±6\sqrt{6}}{2\times 6}
Take the square root of 216.
x=\frac{-12±6\sqrt{6}}{12}
Multiply 2 times 6.
x=\frac{6\sqrt{6}-12}{12}
Now solve the equation x=\frac{-12±6\sqrt{6}}{12} when ± is plus. Add -12 to 6\sqrt{6}.
x=\frac{\sqrt{6}}{2}-1
Divide -12+6\sqrt{6} by 12.
x=\frac{-6\sqrt{6}-12}{12}
Now solve the equation x=\frac{-12±6\sqrt{6}}{12} when ± is minus. Subtract 6\sqrt{6} from -12.
x=-\frac{\sqrt{6}}{2}-1
Divide -12-6\sqrt{6} by 12.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
The equation is now solved.
6x^{2}+12x-3=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
6x^{2}+12x-3-\left(-3\right)=-\left(-3\right)
Add 3 to both sides of the equation.
6x^{2}+12x=-\left(-3\right)
Subtracting -3 from itself leaves 0.
6x^{2}+12x=3
Subtract -3 from 0.
\frac{6x^{2}+12x}{6}=\frac{3}{6}
Divide both sides by 6.
x^{2}+\frac{12}{6}x=\frac{3}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+2x=\frac{3}{6}
Divide 12 by 6.
x^{2}+2x=\frac{1}{2}
Reduce the fraction \frac{3}{6} to lowest terms by extracting and canceling out 3.
x^{2}+2x+1^{2}=\frac{1}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1}{2}+1
Square 1.
x^{2}+2x+1=\frac{3}{2}
Add \frac{1}{2} to 1.
\left(x+1\right)^{2}=\frac{3}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{6}}{2} x+1=-\frac{\sqrt{6}}{2}
Simplify.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
Subtract 1 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}