Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(12x-5-x^{2})
Subtract 9 from 4 to get -5.
-x^{2}+12x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-12±\sqrt{144-4\left(-1\right)\left(-5\right)}}{2\left(-1\right)}
Square 12.
x=\frac{-12±\sqrt{144+4\left(-5\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-12±\sqrt{144-20}}{2\left(-1\right)}
Multiply 4 times -5.
x=\frac{-12±\sqrt{124}}{2\left(-1\right)}
Add 144 to -20.
x=\frac{-12±2\sqrt{31}}{2\left(-1\right)}
Take the square root of 124.
x=\frac{-12±2\sqrt{31}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{31}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{31}}{-2} when ± is plus. Add -12 to 2\sqrt{31}.
x=6-\sqrt{31}
Divide -12+2\sqrt{31} by -2.
x=\frac{-2\sqrt{31}-12}{-2}
Now solve the equation x=\frac{-12±2\sqrt{31}}{-2} when ± is minus. Subtract 2\sqrt{31} from -12.
x=\sqrt{31}+6
Divide -12-2\sqrt{31} by -2.
-x^{2}+12x-5=-\left(x-\left(6-\sqrt{31}\right)\right)\left(x-\left(\sqrt{31}+6\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 6-\sqrt{31} for x_{1} and 6+\sqrt{31} for x_{2}.
12x-5-x^{2}
Subtract 9 from 4 to get -5.