Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

2\left(6p^{2}+5p\right)
Factor out 2.
p\left(6p+5\right)
Consider 6p^{2}+5p. Factor out p.
2p\left(6p+5\right)
Rewrite the complete factored expression.
12p^{2}+10p=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
p=\frac{-10±\sqrt{10^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
p=\frac{-10±10}{2\times 12}
Take the square root of 10^{2}.
p=\frac{-10±10}{24}
Multiply 2 times 12.
p=\frac{0}{24}
Now solve the equation p=\frac{-10±10}{24} when ± is plus. Add -10 to 10.
p=0
Divide 0 by 24.
p=-\frac{20}{24}
Now solve the equation p=\frac{-10±10}{24} when ± is minus. Subtract 10 from -10.
p=-\frac{5}{6}
Reduce the fraction \frac{-20}{24} to lowest terms by extracting and canceling out 4.
12p^{2}+10p=12p\left(p-\left(-\frac{5}{6}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{6} for x_{2}.
12p^{2}+10p=12p\left(p+\frac{5}{6}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12p^{2}+10p=12p\times \frac{6p+5}{6}
Add \frac{5}{6} to p by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12p^{2}+10p=2p\left(6p+5\right)
Cancel out 6, the greatest common factor in 12 and 6.