Skip to main content
Solve for b
Tick mark Image

Similar Problems from Web Search

Share

12b^{2}-36b=17
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
12b^{2}-36b-17=17-17
Subtract 17 from both sides of the equation.
12b^{2}-36b-17=0
Subtracting 17 from itself leaves 0.
b=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 12\left(-17\right)}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -36 for b, and -17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-\left(-36\right)±\sqrt{1296-4\times 12\left(-17\right)}}{2\times 12}
Square -36.
b=\frac{-\left(-36\right)±\sqrt{1296-48\left(-17\right)}}{2\times 12}
Multiply -4 times 12.
b=\frac{-\left(-36\right)±\sqrt{1296+816}}{2\times 12}
Multiply -48 times -17.
b=\frac{-\left(-36\right)±\sqrt{2112}}{2\times 12}
Add 1296 to 816.
b=\frac{-\left(-36\right)±8\sqrt{33}}{2\times 12}
Take the square root of 2112.
b=\frac{36±8\sqrt{33}}{2\times 12}
The opposite of -36 is 36.
b=\frac{36±8\sqrt{33}}{24}
Multiply 2 times 12.
b=\frac{8\sqrt{33}+36}{24}
Now solve the equation b=\frac{36±8\sqrt{33}}{24} when ± is plus. Add 36 to 8\sqrt{33}.
b=\frac{\sqrt{33}}{3}+\frac{3}{2}
Divide 36+8\sqrt{33} by 24.
b=\frac{36-8\sqrt{33}}{24}
Now solve the equation b=\frac{36±8\sqrt{33}}{24} when ± is minus. Subtract 8\sqrt{33} from 36.
b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
Divide 36-8\sqrt{33} by 24.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
The equation is now solved.
12b^{2}-36b=17
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{12b^{2}-36b}{12}=\frac{17}{12}
Divide both sides by 12.
b^{2}+\left(-\frac{36}{12}\right)b=\frac{17}{12}
Dividing by 12 undoes the multiplication by 12.
b^{2}-3b=\frac{17}{12}
Divide -36 by 12.
b^{2}-3b+\left(-\frac{3}{2}\right)^{2}=\frac{17}{12}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-3b+\frac{9}{4}=\frac{17}{12}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
b^{2}-3b+\frac{9}{4}=\frac{11}{3}
Add \frac{17}{12} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{3}{2}\right)^{2}=\frac{11}{3}
Factor b^{2}-3b+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{3}{2}\right)^{2}}=\sqrt{\frac{11}{3}}
Take the square root of both sides of the equation.
b-\frac{3}{2}=\frac{\sqrt{33}}{3} b-\frac{3}{2}=-\frac{\sqrt{33}}{3}
Simplify.
b=\frac{\sqrt{33}}{3}+\frac{3}{2} b=-\frac{\sqrt{33}}{3}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.