Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(4b^{2}+5b\right)
Factor out 3.
b\left(4b+5\right)
Consider 4b^{2}+5b. Factor out b.
3b\left(4b+5\right)
Rewrite the complete factored expression.
12b^{2}+15b=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
b=\frac{-15±\sqrt{15^{2}}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-15±15}{2\times 12}
Take the square root of 15^{2}.
b=\frac{-15±15}{24}
Multiply 2 times 12.
b=\frac{0}{24}
Now solve the equation b=\frac{-15±15}{24} when ± is plus. Add -15 to 15.
b=0
Divide 0 by 24.
b=-\frac{30}{24}
Now solve the equation b=\frac{-15±15}{24} when ± is minus. Subtract 15 from -15.
b=-\frac{5}{4}
Reduce the fraction \frac{-30}{24} to lowest terms by extracting and canceling out 6.
12b^{2}+15b=12b\left(b-\left(-\frac{5}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{5}{4} for x_{2}.
12b^{2}+15b=12b\left(b+\frac{5}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12b^{2}+15b=12b\times \frac{4b+5}{4}
Add \frac{5}{4} to b by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12b^{2}+15b=3b\left(4b+5\right)
Cancel out 4, the greatest common factor in 12 and 4.