Factor
2\left(3a-7\right)\left(2a+3\right)
Evaluate
12a^{2}-10a-42
Share
Copied to clipboard
2\left(6a^{2}-5a-21\right)
Factor out 2.
p+q=-5 pq=6\left(-21\right)=-126
Consider 6a^{2}-5a-21. Factor the expression by grouping. First, the expression needs to be rewritten as 6a^{2}+pa+qa-21. To find p and q, set up a system to be solved.
1,-126 2,-63 3,-42 6,-21 7,-18 9,-14
Since pq is negative, p and q have the opposite signs. Since p+q is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -126.
1-126=-125 2-63=-61 3-42=-39 6-21=-15 7-18=-11 9-14=-5
Calculate the sum for each pair.
p=-14 q=9
The solution is the pair that gives sum -5.
\left(6a^{2}-14a\right)+\left(9a-21\right)
Rewrite 6a^{2}-5a-21 as \left(6a^{2}-14a\right)+\left(9a-21\right).
2a\left(3a-7\right)+3\left(3a-7\right)
Factor out 2a in the first and 3 in the second group.
\left(3a-7\right)\left(2a+3\right)
Factor out common term 3a-7 by using distributive property.
2\left(3a-7\right)\left(2a+3\right)
Rewrite the complete factored expression.
12a^{2}-10a-42=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 12\left(-42\right)}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-10\right)±\sqrt{100-4\times 12\left(-42\right)}}{2\times 12}
Square -10.
a=\frac{-\left(-10\right)±\sqrt{100-48\left(-42\right)}}{2\times 12}
Multiply -4 times 12.
a=\frac{-\left(-10\right)±\sqrt{100+2016}}{2\times 12}
Multiply -48 times -42.
a=\frac{-\left(-10\right)±\sqrt{2116}}{2\times 12}
Add 100 to 2016.
a=\frac{-\left(-10\right)±46}{2\times 12}
Take the square root of 2116.
a=\frac{10±46}{2\times 12}
The opposite of -10 is 10.
a=\frac{10±46}{24}
Multiply 2 times 12.
a=\frac{56}{24}
Now solve the equation a=\frac{10±46}{24} when ± is plus. Add 10 to 46.
a=\frac{7}{3}
Reduce the fraction \frac{56}{24} to lowest terms by extracting and canceling out 8.
a=-\frac{36}{24}
Now solve the equation a=\frac{10±46}{24} when ± is minus. Subtract 46 from 10.
a=-\frac{3}{2}
Reduce the fraction \frac{-36}{24} to lowest terms by extracting and canceling out 12.
12a^{2}-10a-42=12\left(a-\frac{7}{3}\right)\left(a-\left(-\frac{3}{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{7}{3} for x_{1} and -\frac{3}{2} for x_{2}.
12a^{2}-10a-42=12\left(a-\frac{7}{3}\right)\left(a+\frac{3}{2}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
12a^{2}-10a-42=12\times \frac{3a-7}{3}\left(a+\frac{3}{2}\right)
Subtract \frac{7}{3} from a by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12a^{2}-10a-42=12\times \frac{3a-7}{3}\times \frac{2a+3}{2}
Add \frac{3}{2} to a by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
12a^{2}-10a-42=12\times \frac{\left(3a-7\right)\left(2a+3\right)}{3\times 2}
Multiply \frac{3a-7}{3} times \frac{2a+3}{2} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12a^{2}-10a-42=12\times \frac{\left(3a-7\right)\left(2a+3\right)}{6}
Multiply 3 times 2.
12a^{2}-10a-42=2\left(3a-7\right)\left(2a+3\right)
Cancel out 6, the greatest common factor in 12 and 6.
x ^ 2 -\frac{5}{6}x -\frac{7}{2} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 12
r + s = \frac{5}{6} rs = -\frac{7}{2}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{5}{12} - u s = \frac{5}{12} + u
Two numbers r and s sum up to \frac{5}{6} exactly when the average of the two numbers is \frac{1}{2}*\frac{5}{6} = \frac{5}{12}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{5}{12} - u) (\frac{5}{12} + u) = -\frac{7}{2}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{7}{2}
\frac{25}{144} - u^2 = -\frac{7}{2}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{7}{2}-\frac{25}{144} = -\frac{529}{144}
Simplify the expression by subtracting \frac{25}{144} on both sides
u^2 = \frac{529}{144} u = \pm\sqrt{\frac{529}{144}} = \pm \frac{23}{12}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{5}{12} - \frac{23}{12} = -1.500 s = \frac{5}{12} + \frac{23}{12} = 2.333
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}