Factor
3\left(k-2\right)\left(5k-2\right)
Evaluate
3\left(k-2\right)\left(5k-2\right)
Share
Copied to clipboard
3\left(4-12k+5k^{2}\right)
Factor out 3.
5k^{2}-12k+4
Consider 4-12k+5k^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-12 ab=5\times 4=20
Factor the expression by grouping. First, the expression needs to be rewritten as 5k^{2}+ak+bk+4. To find a and b, set up a system to be solved.
-1,-20 -2,-10 -4,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 20.
-1-20=-21 -2-10=-12 -4-5=-9
Calculate the sum for each pair.
a=-10 b=-2
The solution is the pair that gives sum -12.
\left(5k^{2}-10k\right)+\left(-2k+4\right)
Rewrite 5k^{2}-12k+4 as \left(5k^{2}-10k\right)+\left(-2k+4\right).
5k\left(k-2\right)-2\left(k-2\right)
Factor out 5k in the first and -2 in the second group.
\left(k-2\right)\left(5k-2\right)
Factor out common term k-2 by using distributive property.
3\left(k-2\right)\left(5k-2\right)
Rewrite the complete factored expression.
15k^{2}-36k+12=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
k=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 15\times 12}}{2\times 15}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-36\right)±\sqrt{1296-4\times 15\times 12}}{2\times 15}
Square -36.
k=\frac{-\left(-36\right)±\sqrt{1296-60\times 12}}{2\times 15}
Multiply -4 times 15.
k=\frac{-\left(-36\right)±\sqrt{1296-720}}{2\times 15}
Multiply -60 times 12.
k=\frac{-\left(-36\right)±\sqrt{576}}{2\times 15}
Add 1296 to -720.
k=\frac{-\left(-36\right)±24}{2\times 15}
Take the square root of 576.
k=\frac{36±24}{2\times 15}
The opposite of -36 is 36.
k=\frac{36±24}{30}
Multiply 2 times 15.
k=\frac{60}{30}
Now solve the equation k=\frac{36±24}{30} when ± is plus. Add 36 to 24.
k=2
Divide 60 by 30.
k=\frac{12}{30}
Now solve the equation k=\frac{36±24}{30} when ± is minus. Subtract 24 from 36.
k=\frac{2}{5}
Reduce the fraction \frac{12}{30} to lowest terms by extracting and canceling out 6.
15k^{2}-36k+12=15\left(k-2\right)\left(k-\frac{2}{5}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 2 for x_{1} and \frac{2}{5} for x_{2}.
15k^{2}-36k+12=15\left(k-2\right)\times \frac{5k-2}{5}
Subtract \frac{2}{5} from k by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
15k^{2}-36k+12=3\left(k-2\right)\left(5k-2\right)
Cancel out 5, the greatest common factor in 15 and 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}