Factor
\left(2y-3\right)\left(6y-5\right)
Evaluate
\left(2y-3\right)\left(6y-5\right)
Graph
Share
Copied to clipboard
a+b=-28 ab=12\times 15=180
Factor the expression by grouping. First, the expression needs to be rewritten as 12y^{2}+ay+by+15. To find a and b, set up a system to be solved.
-1,-180 -2,-90 -3,-60 -4,-45 -5,-36 -6,-30 -9,-20 -10,-18 -12,-15
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 180.
-1-180=-181 -2-90=-92 -3-60=-63 -4-45=-49 -5-36=-41 -6-30=-36 -9-20=-29 -10-18=-28 -12-15=-27
Calculate the sum for each pair.
a=-18 b=-10
The solution is the pair that gives sum -28.
\left(12y^{2}-18y\right)+\left(-10y+15\right)
Rewrite 12y^{2}-28y+15 as \left(12y^{2}-18y\right)+\left(-10y+15\right).
6y\left(2y-3\right)-5\left(2y-3\right)
Factor out 6y in the first and -5 in the second group.
\left(2y-3\right)\left(6y-5\right)
Factor out common term 2y-3 by using distributive property.
12y^{2}-28y+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 12\times 15}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-28\right)±\sqrt{784-4\times 12\times 15}}{2\times 12}
Square -28.
y=\frac{-\left(-28\right)±\sqrt{784-48\times 15}}{2\times 12}
Multiply -4 times 12.
y=\frac{-\left(-28\right)±\sqrt{784-720}}{2\times 12}
Multiply -48 times 15.
y=\frac{-\left(-28\right)±\sqrt{64}}{2\times 12}
Add 784 to -720.
y=\frac{-\left(-28\right)±8}{2\times 12}
Take the square root of 64.
y=\frac{28±8}{2\times 12}
The opposite of -28 is 28.
y=\frac{28±8}{24}
Multiply 2 times 12.
y=\frac{36}{24}
Now solve the equation y=\frac{28±8}{24} when ± is plus. Add 28 to 8.
y=\frac{3}{2}
Reduce the fraction \frac{36}{24} to lowest terms by extracting and canceling out 12.
y=\frac{20}{24}
Now solve the equation y=\frac{28±8}{24} when ± is minus. Subtract 8 from 28.
y=\frac{5}{6}
Reduce the fraction \frac{20}{24} to lowest terms by extracting and canceling out 4.
12y^{2}-28y+15=12\left(y-\frac{3}{2}\right)\left(y-\frac{5}{6}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{3}{2} for x_{1} and \frac{5}{6} for x_{2}.
12y^{2}-28y+15=12\times \frac{2y-3}{2}\left(y-\frac{5}{6}\right)
Subtract \frac{3}{2} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12y^{2}-28y+15=12\times \frac{2y-3}{2}\times \frac{6y-5}{6}
Subtract \frac{5}{6} from y by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12y^{2}-28y+15=12\times \frac{\left(2y-3\right)\left(6y-5\right)}{2\times 6}
Multiply \frac{2y-3}{2} times \frac{6y-5}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
12y^{2}-28y+15=12\times \frac{\left(2y-3\right)\left(6y-5\right)}{12}
Multiply 2 times 6.
12y^{2}-28y+15=\left(2y-3\right)\left(6y-5\right)
Cancel out 12, the greatest common factor in 12 and 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}