Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

12x^{2}-5x+6=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12\times 6}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -5 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12\times 6}}{2\times 12}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-48\times 6}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-5\right)±\sqrt{25-288}}{2\times 12}
Multiply -48 times 6.
x=\frac{-\left(-5\right)±\sqrt{-263}}{2\times 12}
Add 25 to -288.
x=\frac{-\left(-5\right)±\sqrt{263}i}{2\times 12}
Take the square root of -263.
x=\frac{5±\sqrt{263}i}{2\times 12}
The opposite of -5 is 5.
x=\frac{5±\sqrt{263}i}{24}
Multiply 2 times 12.
x=\frac{5+\sqrt{263}i}{24}
Now solve the equation x=\frac{5±\sqrt{263}i}{24} when ± is plus. Add 5 to i\sqrt{263}.
x=\frac{-\sqrt{263}i+5}{24}
Now solve the equation x=\frac{5±\sqrt{263}i}{24} when ± is minus. Subtract i\sqrt{263} from 5.
x=\frac{5+\sqrt{263}i}{24} x=\frac{-\sqrt{263}i+5}{24}
The equation is now solved.
12x^{2}-5x+6=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}-5x+6-6=-6
Subtract 6 from both sides of the equation.
12x^{2}-5x=-6
Subtracting 6 from itself leaves 0.
\frac{12x^{2}-5x}{12}=-\frac{6}{12}
Divide both sides by 12.
x^{2}-\frac{5}{12}x=-\frac{6}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{5}{12}x=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
x^{2}-\frac{5}{12}x+\left(-\frac{5}{24}\right)^{2}=-\frac{1}{2}+\left(-\frac{5}{24}\right)^{2}
Divide -\frac{5}{12}, the coefficient of the x term, by 2 to get -\frac{5}{24}. Then add the square of -\frac{5}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{12}x+\frac{25}{576}=-\frac{1}{2}+\frac{25}{576}
Square -\frac{5}{24} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{12}x+\frac{25}{576}=-\frac{263}{576}
Add -\frac{1}{2} to \frac{25}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{24}\right)^{2}=-\frac{263}{576}
Factor x^{2}-\frac{5}{12}x+\frac{25}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{24}\right)^{2}}=\sqrt{-\frac{263}{576}}
Take the square root of both sides of the equation.
x-\frac{5}{24}=\frac{\sqrt{263}i}{24} x-\frac{5}{24}=-\frac{\sqrt{263}i}{24}
Simplify.
x=\frac{5+\sqrt{263}i}{24} x=\frac{-\sqrt{263}i+5}{24}
Add \frac{5}{24} to both sides of the equation.