Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

6\left(2x^{2}-7x+5\right)
Factor out 6.
a+b=-7 ab=2\times 5=10
Consider 2x^{2}-7x+5. Factor the expression by grouping. First, the expression needs to be rewritten as 2x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
-1,-10 -2,-5
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 10.
-1-10=-11 -2-5=-7
Calculate the sum for each pair.
a=-5 b=-2
The solution is the pair that gives sum -7.
\left(2x^{2}-5x\right)+\left(-2x+5\right)
Rewrite 2x^{2}-7x+5 as \left(2x^{2}-5x\right)+\left(-2x+5\right).
x\left(2x-5\right)-\left(2x-5\right)
Factor out x in the first and -1 in the second group.
\left(2x-5\right)\left(x-1\right)
Factor out common term 2x-5 by using distributive property.
6\left(2x-5\right)\left(x-1\right)
Rewrite the complete factored expression.
12x^{2}-42x+30=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-42\right)±\sqrt{\left(-42\right)^{2}-4\times 12\times 30}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-42\right)±\sqrt{1764-4\times 12\times 30}}{2\times 12}
Square -42.
x=\frac{-\left(-42\right)±\sqrt{1764-48\times 30}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-42\right)±\sqrt{1764-1440}}{2\times 12}
Multiply -48 times 30.
x=\frac{-\left(-42\right)±\sqrt{324}}{2\times 12}
Add 1764 to -1440.
x=\frac{-\left(-42\right)±18}{2\times 12}
Take the square root of 324.
x=\frac{42±18}{2\times 12}
The opposite of -42 is 42.
x=\frac{42±18}{24}
Multiply 2 times 12.
x=\frac{60}{24}
Now solve the equation x=\frac{42±18}{24} when ± is plus. Add 42 to 18.
x=\frac{5}{2}
Reduce the fraction \frac{60}{24} to lowest terms by extracting and canceling out 12.
x=\frac{24}{24}
Now solve the equation x=\frac{42±18}{24} when ± is minus. Subtract 18 from 42.
x=1
Divide 24 by 24.
12x^{2}-42x+30=12\left(x-\frac{5}{2}\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{5}{2} for x_{1} and 1 for x_{2}.
12x^{2}-42x+30=12\times \frac{2x-5}{2}\left(x-1\right)
Subtract \frac{5}{2} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
12x^{2}-42x+30=6\left(2x-5\right)\left(x-1\right)
Cancel out 2, the greatest common factor in 12 and 2.