Solve for x
x=\frac{\sqrt{393}}{24}+\frac{7}{8}\approx 1.701009483
x=-\frac{\sqrt{393}}{24}+\frac{7}{8}\approx 0.048990517
Graph
Share
Copied to clipboard
12x^{2}-21x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 12}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -21 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 12}}{2\times 12}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-48}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-21\right)±\sqrt{393}}{2\times 12}
Add 441 to -48.
x=\frac{21±\sqrt{393}}{2\times 12}
The opposite of -21 is 21.
x=\frac{21±\sqrt{393}}{24}
Multiply 2 times 12.
x=\frac{\sqrt{393}+21}{24}
Now solve the equation x=\frac{21±\sqrt{393}}{24} when ± is plus. Add 21 to \sqrt{393}.
x=\frac{\sqrt{393}}{24}+\frac{7}{8}
Divide 21+\sqrt{393} by 24.
x=\frac{21-\sqrt{393}}{24}
Now solve the equation x=\frac{21±\sqrt{393}}{24} when ± is minus. Subtract \sqrt{393} from 21.
x=-\frac{\sqrt{393}}{24}+\frac{7}{8}
Divide 21-\sqrt{393} by 24.
x=\frac{\sqrt{393}}{24}+\frac{7}{8} x=-\frac{\sqrt{393}}{24}+\frac{7}{8}
The equation is now solved.
12x^{2}-21x+1=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
12x^{2}-21x+1-1=-1
Subtract 1 from both sides of the equation.
12x^{2}-21x=-1
Subtracting 1 from itself leaves 0.
\frac{12x^{2}-21x}{12}=-\frac{1}{12}
Divide both sides by 12.
x^{2}+\left(-\frac{21}{12}\right)x=-\frac{1}{12}
Dividing by 12 undoes the multiplication by 12.
x^{2}-\frac{7}{4}x=-\frac{1}{12}
Reduce the fraction \frac{-21}{12} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{7}{4}x+\left(-\frac{7}{8}\right)^{2}=-\frac{1}{12}+\left(-\frac{7}{8}\right)^{2}
Divide -\frac{7}{4}, the coefficient of the x term, by 2 to get -\frac{7}{8}. Then add the square of -\frac{7}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{7}{4}x+\frac{49}{64}=-\frac{1}{12}+\frac{49}{64}
Square -\frac{7}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{7}{4}x+\frac{49}{64}=\frac{131}{192}
Add -\frac{1}{12} to \frac{49}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{7}{8}\right)^{2}=\frac{131}{192}
Factor x^{2}-\frac{7}{4}x+\frac{49}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{8}\right)^{2}}=\sqrt{\frac{131}{192}}
Take the square root of both sides of the equation.
x-\frac{7}{8}=\frac{\sqrt{393}}{24} x-\frac{7}{8}=-\frac{\sqrt{393}}{24}
Simplify.
x=\frac{\sqrt{393}}{24}+\frac{7}{8} x=-\frac{\sqrt{393}}{24}+\frac{7}{8}
Add \frac{7}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}