Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(3x^{2}-3x+1\right)
Factor out 4. Polynomial 3x^{2}-3x+1 is not factored since it does not have any rational roots.
12x^{2}-12x+4=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 12\times 4}}{2\times 12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 12\times 4}}{2\times 12}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-48\times 4}}{2\times 12}
Multiply -4 times 12.
x=\frac{-\left(-12\right)±\sqrt{144-192}}{2\times 12}
Multiply -48 times 4.
x=\frac{-\left(-12\right)±\sqrt{-48}}{2\times 12}
Add 144 to -192.
12x^{2}-12x+4
Since the square root of a negative number is not defined in the real field, there are no solutions. Quadratic polynomial cannot be factored.