Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

12\sqrt{6}+9\left(\sqrt{3}\right)^{2}+12\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3\sqrt{3}+2\sqrt{2}\right)^{2}.
12\sqrt{6}+9\times 3+12\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}+36
The square of \sqrt{3} is 3.
12\sqrt{6}+27+12\sqrt{3}\sqrt{2}+4\left(\sqrt{2}\right)^{2}+36
Multiply 9 and 3 to get 27.
12\sqrt{6}+27+12\sqrt{6}+4\left(\sqrt{2}\right)^{2}+36
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
12\sqrt{6}+27+12\sqrt{6}+4\times 2+36
The square of \sqrt{2} is 2.
12\sqrt{6}+27+12\sqrt{6}+8+36
Multiply 4 and 2 to get 8.
12\sqrt{6}+35+12\sqrt{6}+36
Add 27 and 8 to get 35.
24\sqrt{6}+35+36
Combine 12\sqrt{6} and 12\sqrt{6} to get 24\sqrt{6}.
24\sqrt{6}+71
Add 35 and 36 to get 71.