Evaluate
\frac{7\sqrt{3}}{6}\approx 2.020725942
Share
Copied to clipboard
\frac{12\times \frac{\sqrt{1}}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
\frac{12\times \frac{1}{\sqrt{6}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Calculate the square root of 1 and get 1.
\frac{12\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{12\times \frac{\sqrt{6}}{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
The square of \sqrt{6} is 6.
\frac{2\sqrt{6}}{3}\sqrt{\frac{7}{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Cancel out 6, the greatest common factor in 12 and 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{\sqrt{12}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Rewrite the square root of the division \sqrt{\frac{7}{12}} as the division of square roots \frac{\sqrt{7}}{\sqrt{12}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}}{2\sqrt{3}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\left(\sqrt{3}\right)^{2}}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Rationalize the denominator of \frac{\sqrt{7}}{2\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{7}\sqrt{3}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
The square of \sqrt{3} is 3.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{2\times 3}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{10\times 2+1}{2}}
Multiply 2 and 3 to get 6.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{20+1}{2}}
Multiply 10 and 2 to get 20.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\sqrt{\frac{21}{2}}
Add 20 and 1 to get 21.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}}{\sqrt{2}}
Rewrite the square root of the division \sqrt{\frac{21}{2}} as the division of square roots \frac{\sqrt{21}}{\sqrt{2}}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{21}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{21}\sqrt{2}}{2}
The square of \sqrt{2} is 2.
\frac{2\sqrt{6}}{3}\times \frac{\sqrt{21}}{6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
To multiply \sqrt{21} and \sqrt{2}, multiply the numbers under the square root.
\frac{2\sqrt{6}\sqrt{21}}{3\times 6}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Multiply \frac{2\sqrt{6}}{3} times \frac{\sqrt{21}}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}\sqrt{21}}{3\times 3}\times \frac{1}{2}\times \frac{\sqrt{42}}{2}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2}\times \frac{\sqrt{42}}{2}
Multiply \frac{\sqrt{6}\sqrt{21}}{3\times 3} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}\sqrt{21}\sqrt{42}}{3\times 3\times 2\times 2}
Multiply \frac{\sqrt{6}\sqrt{21}}{3\times 3\times 2} times \frac{\sqrt{42}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{6}\sqrt{21}\sqrt{6}\sqrt{7}}{3\times 3\times 2\times 2}
Factor 42=6\times 7. Rewrite the square root of the product \sqrt{6\times 7} as the product of square roots \sqrt{6}\sqrt{7}.
\frac{6\sqrt{21}\sqrt{7}}{3\times 3\times 2\times 2}
Multiply \sqrt{6} and \sqrt{6} to get 6.
\frac{6\sqrt{7}\sqrt{3}\sqrt{7}}{3\times 3\times 2\times 2}
Factor 21=7\times 3. Rewrite the square root of the product \sqrt{7\times 3} as the product of square roots \sqrt{7}\sqrt{3}.
\frac{6\times 7\sqrt{3}}{3\times 3\times 2\times 2}
Multiply \sqrt{7} and \sqrt{7} to get 7.
\frac{42\sqrt{3}}{3\times 3\times 2\times 2}
Multiply 6 and 7 to get 42.
\frac{42\sqrt{3}}{9\times 2\times 2}
Multiply 3 and 3 to get 9.
\frac{42\sqrt{3}}{18\times 2}
Multiply 9 and 2 to get 18.
\frac{42\sqrt{3}}{36}
Multiply 18 and 2 to get 36.
\frac{7}{6}\sqrt{3}
Divide 42\sqrt{3} by 36 to get \frac{7}{6}\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}