Evaluate
6\sqrt{10}-80\approx -61.026334039
Factor
6 \sqrt{10} - 80 = -61.026334039
Share
Copied to clipboard
\frac{12\times 5}{\sqrt{10}}-1.6\times 50
Divide 12 by \frac{\sqrt{10}}{5} by multiplying 12 by the reciprocal of \frac{\sqrt{10}}{5}.
\frac{60}{\sqrt{10}}-1.6\times 50
Multiply 12 and 5 to get 60.
\frac{60\sqrt{10}}{\left(\sqrt{10}\right)^{2}}-1.6\times 50
Rationalize the denominator of \frac{60}{\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{60\sqrt{10}}{10}-1.6\times 50
The square of \sqrt{10} is 10.
6\sqrt{10}-1.6\times 50
Divide 60\sqrt{10} by 10 to get 6\sqrt{10}.
6\sqrt{10}-80
Multiply 1.6 and 50 to get 80.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}