Solve for y
y=10
Solve for y (complex solution)
y=\frac{2\pi n_{1}i}{\ln(12)}+10
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
12^{10}=12^{y}
To multiply powers of the same base, add their exponents. Add 6 and 4 to get 10.
61917364224=12^{y}
Calculate 12 to the power of 10 and get 61917364224.
12^{y}=61917364224
Swap sides so that all variable terms are on the left hand side.
\log(12^{y})=\log(61917364224)
Take the logarithm of both sides of the equation.
y\log(12)=\log(61917364224)
The logarithm of a number raised to a power is the power times the logarithm of the number.
y=\frac{\log(61917364224)}{\log(12)}
Divide both sides by \log(12).
y=\log_{12}\left(61917364224\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}