Solve for b
b=6\sqrt{3}\approx 10.392304845
b=-6\sqrt{3}\approx -10.392304845
Share
Copied to clipboard
144-6^{2}=b^{2}
Calculate 12 to the power of 2 and get 144.
144-36=b^{2}
Calculate 6 to the power of 2 and get 36.
108=b^{2}
Subtract 36 from 144 to get 108.
b^{2}=108
Swap sides so that all variable terms are on the left hand side.
b=6\sqrt{3} b=-6\sqrt{3}
Take the square root of both sides of the equation.
144-6^{2}=b^{2}
Calculate 12 to the power of 2 and get 144.
144-36=b^{2}
Calculate 6 to the power of 2 and get 36.
108=b^{2}
Subtract 36 from 144 to get 108.
b^{2}=108
Swap sides so that all variable terms are on the left hand side.
b^{2}-108=0
Subtract 108 from both sides.
b=\frac{0±\sqrt{0^{2}-4\left(-108\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -108 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{0±\sqrt{-4\left(-108\right)}}{2}
Square 0.
b=\frac{0±\sqrt{432}}{2}
Multiply -4 times -108.
b=\frac{0±12\sqrt{3}}{2}
Take the square root of 432.
b=6\sqrt{3}
Now solve the equation b=\frac{0±12\sqrt{3}}{2} when ± is plus.
b=-6\sqrt{3}
Now solve the equation b=\frac{0±12\sqrt{3}}{2} when ± is minus.
b=6\sqrt{3} b=-6\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}