Solve for d
d=-\frac{9x^{2}+6x-11}{\left(1-3x\right)^{2}}
x\neq \frac{1}{3}
Solve for x (complex solution)
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\\x=1\text{, }&d=-1\end{matrix}\right.
Solve for x
\left\{\begin{matrix}x=-\frac{-d+2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{; }x=-\frac{-d-2\sqrt{2d+3}+1}{3\left(d+1\right)}\text{, }&d\neq -1\text{ and }d\geq -\frac{3}{2}\\x=1\text{, }&d=-1\end{matrix}\right.
Graph
Share
Copied to clipboard
12=\left(1-3x\right)^{2}d+\left(1+3x\right)\left(1+3x\right)
Multiply 1-3x and 1-3x to get \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}d+\left(1+3x\right)^{2}
Multiply 1+3x and 1+3x to get \left(1+3x\right)^{2}.
12=\left(1-6x+9x^{2}\right)d+\left(1+3x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
12=d-6xd+9x^{2}d+\left(1+3x\right)^{2}
Use the distributive property to multiply 1-6x+9x^{2} by d.
12=d-6xd+9x^{2}d+1+6x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3x\right)^{2}.
d-6xd+9x^{2}d+1+6x+9x^{2}=12
Swap sides so that all variable terms are on the left hand side.
d-6xd+9x^{2}d+6x+9x^{2}=12-1
Subtract 1 from both sides.
d-6xd+9x^{2}d+6x+9x^{2}=11
Subtract 1 from 12 to get 11.
d-6xd+9x^{2}d+9x^{2}=11-6x
Subtract 6x from both sides.
d-6xd+9x^{2}d=11-6x-9x^{2}
Subtract 9x^{2} from both sides.
\left(1-6x+9x^{2}\right)d=11-6x-9x^{2}
Combine all terms containing d.
\left(9x^{2}-6x+1\right)d=11-6x-9x^{2}
The equation is in standard form.
\frac{\left(9x^{2}-6x+1\right)d}{9x^{2}-6x+1}=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Divide both sides by 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Dividing by 1-6x+9x^{2} undoes the multiplication by 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{\left(3x-1\right)^{2}}
Divide 11-6x-9x^{2} by 1-6x+9x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}