Skip to main content
Solve for d
Tick mark Image
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

12=\left(1-3x\right)^{2}d+\left(1+3x\right)\left(1+3x\right)
Multiply 1-3x and 1-3x to get \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}d+\left(1+3x\right)^{2}
Multiply 1+3x and 1+3x to get \left(1+3x\right)^{2}.
12=\left(1-6x+9x^{2}\right)d+\left(1+3x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
12=d-6xd+9x^{2}d+\left(1+3x\right)^{2}
Use the distributive property to multiply 1-6x+9x^{2} by d.
12=d-6xd+9x^{2}d+1+6x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3x\right)^{2}.
d-6xd+9x^{2}d+1+6x+9x^{2}=12
Swap sides so that all variable terms are on the left hand side.
d-6xd+9x^{2}d+6x+9x^{2}=12-1
Subtract 1 from both sides.
d-6xd+9x^{2}d+6x+9x^{2}=11
Subtract 1 from 12 to get 11.
d-6xd+9x^{2}d+9x^{2}=11-6x
Subtract 6x from both sides.
d-6xd+9x^{2}d=11-6x-9x^{2}
Subtract 9x^{2} from both sides.
\left(1-6x+9x^{2}\right)d=11-6x-9x^{2}
Combine all terms containing d.
\left(9x^{2}-6x+1\right)d=11-6x-9x^{2}
The equation is in standard form.
\frac{\left(9x^{2}-6x+1\right)d}{9x^{2}-6x+1}=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Divide both sides by 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{9x^{2}-6x+1}
Dividing by 1-6x+9x^{2} undoes the multiplication by 1-6x+9x^{2}.
d=\frac{11-6x-9x^{2}}{\left(3x-1\right)^{2}}
Divide 11-6x-9x^{2} by 1-6x+9x^{2}.