Solve for x
x=\frac{\sqrt{5}}{3}\approx 0.745355992
x=-\frac{\sqrt{5}}{3}\approx -0.745355992
Graph
Share
Copied to clipboard
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
Multiply 1-3x and 1-3x to get \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
Multiply 1+3x and 1+3x to get \left(1+3x\right)^{2}.
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
12=1-6x+9x^{2}+1+6x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3x\right)^{2}.
12=2-6x+9x^{2}+6x+9x^{2}
Add 1 and 1 to get 2.
12=2+9x^{2}+9x^{2}
Combine -6x and 6x to get 0.
12=2+18x^{2}
Combine 9x^{2} and 9x^{2} to get 18x^{2}.
2+18x^{2}=12
Swap sides so that all variable terms are on the left hand side.
18x^{2}=12-2
Subtract 2 from both sides.
18x^{2}=10
Subtract 2 from 12 to get 10.
x^{2}=\frac{10}{18}
Divide both sides by 18.
x^{2}=\frac{5}{9}
Reduce the fraction \frac{10}{18} to lowest terms by extracting and canceling out 2.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
Take the square root of both sides of the equation.
12=\left(1-3x\right)^{2}+\left(1+3x\right)\left(1+3x\right)
Multiply 1-3x and 1-3x to get \left(1-3x\right)^{2}.
12=\left(1-3x\right)^{2}+\left(1+3x\right)^{2}
Multiply 1+3x and 1+3x to get \left(1+3x\right)^{2}.
12=1-6x+9x^{2}+\left(1+3x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-3x\right)^{2}.
12=1-6x+9x^{2}+1+6x+9x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+3x\right)^{2}.
12=2-6x+9x^{2}+6x+9x^{2}
Add 1 and 1 to get 2.
12=2+9x^{2}+9x^{2}
Combine -6x and 6x to get 0.
12=2+18x^{2}
Combine 9x^{2} and 9x^{2} to get 18x^{2}.
2+18x^{2}=12
Swap sides so that all variable terms are on the left hand side.
2+18x^{2}-12=0
Subtract 12 from both sides.
-10+18x^{2}=0
Subtract 12 from 2 to get -10.
18x^{2}-10=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 18\left(-10\right)}}{2\times 18}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 18 for a, 0 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 18\left(-10\right)}}{2\times 18}
Square 0.
x=\frac{0±\sqrt{-72\left(-10\right)}}{2\times 18}
Multiply -4 times 18.
x=\frac{0±\sqrt{720}}{2\times 18}
Multiply -72 times -10.
x=\frac{0±12\sqrt{5}}{2\times 18}
Take the square root of 720.
x=\frac{0±12\sqrt{5}}{36}
Multiply 2 times 18.
x=\frac{\sqrt{5}}{3}
Now solve the equation x=\frac{0±12\sqrt{5}}{36} when ± is plus.
x=-\frac{\sqrt{5}}{3}
Now solve the equation x=\frac{0±12\sqrt{5}}{36} when ± is minus.
x=\frac{\sqrt{5}}{3} x=-\frac{\sqrt{5}}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}