Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(119\times 5+7\right)-\frac{4}{3}\left(5x-\frac{4\times 2+1}{2}\right)=8\times 15+14
Multiply both sides of the equation by 15, the least common multiple of 5,15.
3\left(595+7\right)-\frac{4}{3}\left(5x-\frac{4\times 2+1}{2}\right)=8\times 15+14
Multiply 119 and 5 to get 595.
3\times 602-\frac{4}{3}\left(5x-\frac{4\times 2+1}{2}\right)=8\times 15+14
Add 595 and 7 to get 602.
1806-\frac{4}{3}\left(5x-\frac{4\times 2+1}{2}\right)=8\times 15+14
Multiply 3 and 602 to get 1806.
1806-\frac{4}{3}\left(5x-\frac{8+1}{2}\right)=8\times 15+14
Multiply 4 and 2 to get 8.
1806-\frac{4}{3}\left(5x-\frac{9}{2}\right)=8\times 15+14
Add 8 and 1 to get 9.
1806-\frac{4}{3}\times 5x-\frac{4}{3}\left(-\frac{9}{2}\right)=8\times 15+14
Use the distributive property to multiply -\frac{4}{3} by 5x-\frac{9}{2}.
1806+\frac{-4\times 5}{3}x-\frac{4}{3}\left(-\frac{9}{2}\right)=8\times 15+14
Express -\frac{4}{3}\times 5 as a single fraction.
1806+\frac{-20}{3}x-\frac{4}{3}\left(-\frac{9}{2}\right)=8\times 15+14
Multiply -4 and 5 to get -20.
1806-\frac{20}{3}x-\frac{4}{3}\left(-\frac{9}{2}\right)=8\times 15+14
Fraction \frac{-20}{3} can be rewritten as -\frac{20}{3} by extracting the negative sign.
1806-\frac{20}{3}x+\frac{-4\left(-9\right)}{3\times 2}=8\times 15+14
Multiply -\frac{4}{3} times -\frac{9}{2} by multiplying numerator times numerator and denominator times denominator.
1806-\frac{20}{3}x+\frac{36}{6}=8\times 15+14
Do the multiplications in the fraction \frac{-4\left(-9\right)}{3\times 2}.
1806-\frac{20}{3}x+6=8\times 15+14
Divide 36 by 6 to get 6.
1812-\frac{20}{3}x=8\times 15+14
Add 1806 and 6 to get 1812.
1812-\frac{20}{3}x=120+14
Multiply 8 and 15 to get 120.
1812-\frac{20}{3}x=134
Add 120 and 14 to get 134.
-\frac{20}{3}x=134-1812
Subtract 1812 from both sides.
-\frac{20}{3}x=-1678
Subtract 1812 from 134 to get -1678.
x=-1678\left(-\frac{3}{20}\right)
Multiply both sides by -\frac{3}{20}, the reciprocal of -\frac{20}{3}.
x=\frac{-1678\left(-3\right)}{20}
Express -1678\left(-\frac{3}{20}\right) as a single fraction.
x=\frac{5034}{20}
Multiply -1678 and -3 to get 5034.
x=\frac{2517}{10}
Reduce the fraction \frac{5034}{20} to lowest terms by extracting and canceling out 2.