Evaluate
\frac{119}{20}=5.95
Factor
\frac{7 \cdot 17}{2 ^ {2} \cdot 5} = 5\frac{19}{20} = 5.95
Share
Copied to clipboard
\begin{array}{l}\phantom{20)}\phantom{1}\\20\overline{)119}\\\end{array}
Use the 1^{st} digit 1 from dividend 119
\begin{array}{l}\phantom{20)}0\phantom{2}\\20\overline{)119}\\\end{array}
Since 1 is less than 20, use the next digit 1 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{20)}0\phantom{3}\\20\overline{)119}\\\end{array}
Use the 2^{nd} digit 1 from dividend 119
\begin{array}{l}\phantom{20)}00\phantom{4}\\20\overline{)119}\\\end{array}
Since 11 is less than 20, use the next digit 9 from dividend 119 and add 0 to the quotient
\begin{array}{l}\phantom{20)}00\phantom{5}\\20\overline{)119}\\\end{array}
Use the 3^{rd} digit 9 from dividend 119
\begin{array}{l}\phantom{20)}005\phantom{6}\\20\overline{)119}\\\phantom{20)}\underline{\phantom{}100\phantom{}}\\\phantom{20)9}19\\\end{array}
Find closest multiple of 20 to 119. We see that 5 \times 20 = 100 is the nearest. Now subtract 100 from 119 to get reminder 19. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }19
Since 19 is less than 20, stop the division. The reminder is 19. The topmost line 005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}