Evaluate
\frac{118000}{1037}\approx 113.789778206
Factor
\frac{2 ^ {4} \cdot 5 ^ {3} \cdot 59}{17 \cdot 61} = 113\frac{819}{1037} = 113.78977820636452
Share
Copied to clipboard
\begin{array}{l}\phantom{10370000)}\phantom{1}\\10370000\overline{)1180000000}\\\end{array}
Use the 1^{st} digit 1 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}0\phantom{2}\\10370000\overline{)1180000000}\\\end{array}
Since 1 is less than 10370000, use the next digit 1 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}0\phantom{3}\\10370000\overline{)1180000000}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}00\phantom{4}\\10370000\overline{)1180000000}\\\end{array}
Since 11 is less than 10370000, use the next digit 8 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}00\phantom{5}\\10370000\overline{)1180000000}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}000\phantom{6}\\10370000\overline{)1180000000}\\\end{array}
Since 118 is less than 10370000, use the next digit 0 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}000\phantom{7}\\10370000\overline{)1180000000}\\\end{array}
Use the 4^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}0000\phantom{8}\\10370000\overline{)1180000000}\\\end{array}
Since 1180 is less than 10370000, use the next digit 0 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}0000\phantom{9}\\10370000\overline{)1180000000}\\\end{array}
Use the 5^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}00000\phantom{10}\\10370000\overline{)1180000000}\\\end{array}
Since 11800 is less than 10370000, use the next digit 0 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}00000\phantom{11}\\10370000\overline{)1180000000}\\\end{array}
Use the 6^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}000000\phantom{12}\\10370000\overline{)1180000000}\\\end{array}
Since 118000 is less than 10370000, use the next digit 0 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}000000\phantom{13}\\10370000\overline{)1180000000}\\\end{array}
Use the 7^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}0000000\phantom{14}\\10370000\overline{)1180000000}\\\end{array}
Since 1180000 is less than 10370000, use the next digit 0 from dividend 1180000000 and add 0 to the quotient
\begin{array}{l}\phantom{10370000)}0000000\phantom{15}\\10370000\overline{)1180000000}\\\end{array}
Use the 8^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}00000001\phantom{16}\\10370000\overline{)1180000000}\\\phantom{10370000)}\underline{\phantom{}10370000\phantom{99}}\\\phantom{10370000)9}1430000\\\end{array}
Find closest multiple of 10370000 to 11800000. We see that 1 \times 10370000 = 10370000 is the nearest. Now subtract 10370000 from 11800000 to get reminder 1430000. Add 1 to quotient.
\begin{array}{l}\phantom{10370000)}00000001\phantom{17}\\10370000\overline{)1180000000}\\\phantom{10370000)}\underline{\phantom{}10370000\phantom{99}}\\\phantom{10370000)9}14300000\\\end{array}
Use the 9^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}000000011\phantom{18}\\10370000\overline{)1180000000}\\\phantom{10370000)}\underline{\phantom{}10370000\phantom{99}}\\\phantom{10370000)9}14300000\\\phantom{10370000)}\underline{\phantom{9}10370000\phantom{9}}\\\phantom{10370000)99}3930000\\\end{array}
Find closest multiple of 10370000 to 14300000. We see that 1 \times 10370000 = 10370000 is the nearest. Now subtract 10370000 from 14300000 to get reminder 3930000. Add 1 to quotient.
\begin{array}{l}\phantom{10370000)}000000011\phantom{19}\\10370000\overline{)1180000000}\\\phantom{10370000)}\underline{\phantom{}10370000\phantom{99}}\\\phantom{10370000)9}14300000\\\phantom{10370000)}\underline{\phantom{9}10370000\phantom{9}}\\\phantom{10370000)99}39300000\\\end{array}
Use the 10^{th} digit 0 from dividend 1180000000
\begin{array}{l}\phantom{10370000)}0000000113\phantom{20}\\10370000\overline{)1180000000}\\\phantom{10370000)}\underline{\phantom{}10370000\phantom{99}}\\\phantom{10370000)9}14300000\\\phantom{10370000)}\underline{\phantom{9}10370000\phantom{9}}\\\phantom{10370000)99}39300000\\\phantom{10370000)}\underline{\phantom{99}31110000\phantom{}}\\\phantom{10370000)999}8190000\\\end{array}
Find closest multiple of 10370000 to 39300000. We see that 3 \times 10370000 = 31110000 is the nearest. Now subtract 31110000 from 39300000 to get reminder 8190000. Add 3 to quotient.
\text{Quotient: }113 \text{Reminder: }8190000
Since 8190000 is less than 10370000, stop the division. The reminder is 8190000. The topmost line 0000000113 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 113.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}