Evaluate
\frac{116}{15}\approx 7.733333333
Factor
\frac{2 ^ {2} \cdot 29}{3 \cdot 5} = 7\frac{11}{15} = 7.733333333333333
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)116}\\\end{array}
Use the 1^{st} digit 1 from dividend 116
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)116}\\\end{array}
Since 1 is less than 15, use the next digit 1 from dividend 116 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)116}\\\end{array}
Use the 2^{nd} digit 1 from dividend 116
\begin{array}{l}\phantom{15)}00\phantom{4}\\15\overline{)116}\\\end{array}
Since 11 is less than 15, use the next digit 6 from dividend 116 and add 0 to the quotient
\begin{array}{l}\phantom{15)}00\phantom{5}\\15\overline{)116}\\\end{array}
Use the 3^{rd} digit 6 from dividend 116
\begin{array}{l}\phantom{15)}007\phantom{6}\\15\overline{)116}\\\phantom{15)}\underline{\phantom{}105\phantom{}}\\\phantom{15)9}11\\\end{array}
Find closest multiple of 15 to 116. We see that 7 \times 15 = 105 is the nearest. Now subtract 105 from 116 to get reminder 11. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }11
Since 11 is less than 15, stop the division. The reminder is 11. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}