Evaluate
24
Factor
2^{3}\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{4800)}\phantom{1}\\4800\overline{)115200}\\\end{array}
Use the 1^{st} digit 1 from dividend 115200
\begin{array}{l}\phantom{4800)}0\phantom{2}\\4800\overline{)115200}\\\end{array}
Since 1 is less than 4800, use the next digit 1 from dividend 115200 and add 0 to the quotient
\begin{array}{l}\phantom{4800)}0\phantom{3}\\4800\overline{)115200}\\\end{array}
Use the 2^{nd} digit 1 from dividend 115200
\begin{array}{l}\phantom{4800)}00\phantom{4}\\4800\overline{)115200}\\\end{array}
Since 11 is less than 4800, use the next digit 5 from dividend 115200 and add 0 to the quotient
\begin{array}{l}\phantom{4800)}00\phantom{5}\\4800\overline{)115200}\\\end{array}
Use the 3^{rd} digit 5 from dividend 115200
\begin{array}{l}\phantom{4800)}000\phantom{6}\\4800\overline{)115200}\\\end{array}
Since 115 is less than 4800, use the next digit 2 from dividend 115200 and add 0 to the quotient
\begin{array}{l}\phantom{4800)}000\phantom{7}\\4800\overline{)115200}\\\end{array}
Use the 4^{th} digit 2 from dividend 115200
\begin{array}{l}\phantom{4800)}0000\phantom{8}\\4800\overline{)115200}\\\end{array}
Since 1152 is less than 4800, use the next digit 0 from dividend 115200 and add 0 to the quotient
\begin{array}{l}\phantom{4800)}0000\phantom{9}\\4800\overline{)115200}\\\end{array}
Use the 5^{th} digit 0 from dividend 115200
\begin{array}{l}\phantom{4800)}00002\phantom{10}\\4800\overline{)115200}\\\phantom{4800)}\underline{\phantom{9}9600\phantom{9}}\\\phantom{4800)9}1920\\\end{array}
Find closest multiple of 4800 to 11520. We see that 2 \times 4800 = 9600 is the nearest. Now subtract 9600 from 11520 to get reminder 1920. Add 2 to quotient.
\begin{array}{l}\phantom{4800)}00002\phantom{11}\\4800\overline{)115200}\\\phantom{4800)}\underline{\phantom{9}9600\phantom{9}}\\\phantom{4800)9}19200\\\end{array}
Use the 6^{th} digit 0 from dividend 115200
\begin{array}{l}\phantom{4800)}000024\phantom{12}\\4800\overline{)115200}\\\phantom{4800)}\underline{\phantom{9}9600\phantom{9}}\\\phantom{4800)9}19200\\\phantom{4800)}\underline{\phantom{9}19200\phantom{}}\\\phantom{4800)999999}0\\\end{array}
Find closest multiple of 4800 to 19200. We see that 4 \times 4800 = 19200 is the nearest. Now subtract 19200 from 19200 to get reminder 0. Add 4 to quotient.
\text{Quotient: }24 \text{Reminder: }0
Since 0 is less than 4800, stop the division. The reminder is 0. The topmost line 000024 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}