Evaluate
\frac{115}{87}\approx 1.32183908
Factor
\frac{5 \cdot 23}{3 \cdot 29} = 1\frac{28}{87} = 1.3218390804597702
Share
Copied to clipboard
\begin{array}{l}\phantom{87)}\phantom{1}\\87\overline{)115}\\\end{array}
Use the 1^{st} digit 1 from dividend 115
\begin{array}{l}\phantom{87)}0\phantom{2}\\87\overline{)115}\\\end{array}
Since 1 is less than 87, use the next digit 1 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{87)}0\phantom{3}\\87\overline{)115}\\\end{array}
Use the 2^{nd} digit 1 from dividend 115
\begin{array}{l}\phantom{87)}00\phantom{4}\\87\overline{)115}\\\end{array}
Since 11 is less than 87, use the next digit 5 from dividend 115 and add 0 to the quotient
\begin{array}{l}\phantom{87)}00\phantom{5}\\87\overline{)115}\\\end{array}
Use the 3^{rd} digit 5 from dividend 115
\begin{array}{l}\phantom{87)}001\phantom{6}\\87\overline{)115}\\\phantom{87)}\underline{\phantom{9}87\phantom{}}\\\phantom{87)9}28\\\end{array}
Find closest multiple of 87 to 115. We see that 1 \times 87 = 87 is the nearest. Now subtract 87 from 115 to get reminder 28. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }28
Since 28 is less than 87, stop the division. The reminder is 28. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}