Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

113a^{2}=1239
Add 1239 to both sides. Anything plus zero gives itself.
a^{2}=\frac{1239}{113}
Divide both sides by 113.
a=\frac{\sqrt{140007}}{113} a=-\frac{\sqrt{140007}}{113}
Take the square root of both sides of the equation.
113a^{2}-1239=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
a=\frac{0±\sqrt{0^{2}-4\times 113\left(-1239\right)}}{2\times 113}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 113 for a, 0 for b, and -1239 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{0±\sqrt{-4\times 113\left(-1239\right)}}{2\times 113}
Square 0.
a=\frac{0±\sqrt{-452\left(-1239\right)}}{2\times 113}
Multiply -4 times 113.
a=\frac{0±\sqrt{560028}}{2\times 113}
Multiply -452 times -1239.
a=\frac{0±2\sqrt{140007}}{2\times 113}
Take the square root of 560028.
a=\frac{0±2\sqrt{140007}}{226}
Multiply 2 times 113.
a=\frac{\sqrt{140007}}{113}
Now solve the equation a=\frac{0±2\sqrt{140007}}{226} when ± is plus.
a=-\frac{\sqrt{140007}}{113}
Now solve the equation a=\frac{0±2\sqrt{140007}}{226} when ± is minus.
a=\frac{\sqrt{140007}}{113} a=-\frac{\sqrt{140007}}{113}
The equation is now solved.