Evaluate
\frac{28}{15}\approx 1.866666667
Factor
\frac{2 ^ {2} \cdot 7}{3 \cdot 5} = 1\frac{13}{15} = 1.8666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{600)}\phantom{1}\\600\overline{)1120}\\\end{array}
Use the 1^{st} digit 1 from dividend 1120
\begin{array}{l}\phantom{600)}0\phantom{2}\\600\overline{)1120}\\\end{array}
Since 1 is less than 600, use the next digit 1 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{600)}0\phantom{3}\\600\overline{)1120}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1120
\begin{array}{l}\phantom{600)}00\phantom{4}\\600\overline{)1120}\\\end{array}
Since 11 is less than 600, use the next digit 2 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{600)}00\phantom{5}\\600\overline{)1120}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1120
\begin{array}{l}\phantom{600)}000\phantom{6}\\600\overline{)1120}\\\end{array}
Since 112 is less than 600, use the next digit 0 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{600)}000\phantom{7}\\600\overline{)1120}\\\end{array}
Use the 4^{th} digit 0 from dividend 1120
\begin{array}{l}\phantom{600)}0001\phantom{8}\\600\overline{)1120}\\\phantom{600)}\underline{\phantom{9}600\phantom{}}\\\phantom{600)9}520\\\end{array}
Find closest multiple of 600 to 1120. We see that 1 \times 600 = 600 is the nearest. Now subtract 600 from 1120 to get reminder 520. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }520
Since 520 is less than 600, stop the division. The reminder is 520. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}