Evaluate
\frac{1120}{209}\approx 5.358851675
Factor
\frac{2 ^ {5} \cdot 5 \cdot 7}{11 \cdot 19} = 5\frac{75}{209} = 5.358851674641149
Share
Copied to clipboard
\begin{array}{l}\phantom{209)}\phantom{1}\\209\overline{)1120}\\\end{array}
Use the 1^{st} digit 1 from dividend 1120
\begin{array}{l}\phantom{209)}0\phantom{2}\\209\overline{)1120}\\\end{array}
Since 1 is less than 209, use the next digit 1 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{209)}0\phantom{3}\\209\overline{)1120}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1120
\begin{array}{l}\phantom{209)}00\phantom{4}\\209\overline{)1120}\\\end{array}
Since 11 is less than 209, use the next digit 2 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{209)}00\phantom{5}\\209\overline{)1120}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1120
\begin{array}{l}\phantom{209)}000\phantom{6}\\209\overline{)1120}\\\end{array}
Since 112 is less than 209, use the next digit 0 from dividend 1120 and add 0 to the quotient
\begin{array}{l}\phantom{209)}000\phantom{7}\\209\overline{)1120}\\\end{array}
Use the 4^{th} digit 0 from dividend 1120
\begin{array}{l}\phantom{209)}0005\phantom{8}\\209\overline{)1120}\\\phantom{209)}\underline{\phantom{}1045\phantom{}}\\\phantom{209)99}75\\\end{array}
Find closest multiple of 209 to 1120. We see that 5 \times 209 = 1045 is the nearest. Now subtract 1045 from 1120 to get reminder 75. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }75
Since 75 is less than 209, stop the division. The reminder is 75. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}