Solve for k
k=\frac{-9+\sqrt{3055}i}{224}\approx -0.040178571+0.246750243i
k=\frac{-\sqrt{3055}i-9}{224}\approx -0.040178571-0.246750243i
Share
Copied to clipboard
112k^{2}+9k=-7
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
112k^{2}+9k-\left(-7\right)=-7-\left(-7\right)
Add 7 to both sides of the equation.
112k^{2}+9k-\left(-7\right)=0
Subtracting -7 from itself leaves 0.
112k^{2}+9k+7=0
Subtract -7 from 0.
k=\frac{-9±\sqrt{9^{2}-4\times 112\times 7}}{2\times 112}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 112 for a, 9 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-9±\sqrt{81-4\times 112\times 7}}{2\times 112}
Square 9.
k=\frac{-9±\sqrt{81-448\times 7}}{2\times 112}
Multiply -4 times 112.
k=\frac{-9±\sqrt{81-3136}}{2\times 112}
Multiply -448 times 7.
k=\frac{-9±\sqrt{-3055}}{2\times 112}
Add 81 to -3136.
k=\frac{-9±\sqrt{3055}i}{2\times 112}
Take the square root of -3055.
k=\frac{-9±\sqrt{3055}i}{224}
Multiply 2 times 112.
k=\frac{-9+\sqrt{3055}i}{224}
Now solve the equation k=\frac{-9±\sqrt{3055}i}{224} when ± is plus. Add -9 to i\sqrt{3055}.
k=\frac{-\sqrt{3055}i-9}{224}
Now solve the equation k=\frac{-9±\sqrt{3055}i}{224} when ± is minus. Subtract i\sqrt{3055} from -9.
k=\frac{-9+\sqrt{3055}i}{224} k=\frac{-\sqrt{3055}i-9}{224}
The equation is now solved.
112k^{2}+9k=-7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{112k^{2}+9k}{112}=-\frac{7}{112}
Divide both sides by 112.
k^{2}+\frac{9}{112}k=-\frac{7}{112}
Dividing by 112 undoes the multiplication by 112.
k^{2}+\frac{9}{112}k=-\frac{1}{16}
Reduce the fraction \frac{-7}{112} to lowest terms by extracting and canceling out 7.
k^{2}+\frac{9}{112}k+\left(\frac{9}{224}\right)^{2}=-\frac{1}{16}+\left(\frac{9}{224}\right)^{2}
Divide \frac{9}{112}, the coefficient of the x term, by 2 to get \frac{9}{224}. Then add the square of \frac{9}{224} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{9}{112}k+\frac{81}{50176}=-\frac{1}{16}+\frac{81}{50176}
Square \frac{9}{224} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{9}{112}k+\frac{81}{50176}=-\frac{3055}{50176}
Add -\frac{1}{16} to \frac{81}{50176} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{9}{224}\right)^{2}=-\frac{3055}{50176}
Factor k^{2}+\frac{9}{112}k+\frac{81}{50176}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{9}{224}\right)^{2}}=\sqrt{-\frac{3055}{50176}}
Take the square root of both sides of the equation.
k+\frac{9}{224}=\frac{\sqrt{3055}i}{224} k+\frac{9}{224}=-\frac{\sqrt{3055}i}{224}
Simplify.
k=\frac{-9+\sqrt{3055}i}{224} k=\frac{-\sqrt{3055}i-9}{224}
Subtract \frac{9}{224} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}