112 \div ( 1 + 12 \% ) = 11
Verify
false
Share
Copied to clipboard
\frac{112}{1+\frac{3}{25}}=11
Reduce the fraction \frac{12}{100} to lowest terms by extracting and canceling out 4.
\frac{112}{\frac{25}{25}+\frac{3}{25}}=11
Convert 1 to fraction \frac{25}{25}.
\frac{112}{\frac{25+3}{25}}=11
Since \frac{25}{25} and \frac{3}{25} have the same denominator, add them by adding their numerators.
\frac{112}{\frac{28}{25}}=11
Add 25 and 3 to get 28.
112\times \frac{25}{28}=11
Divide 112 by \frac{28}{25} by multiplying 112 by the reciprocal of \frac{28}{25}.
\frac{112\times 25}{28}=11
Express 112\times \frac{25}{28} as a single fraction.
\frac{2800}{28}=11
Multiply 112 and 25 to get 2800.
100=11
Divide 2800 by 28 to get 100.
\text{false}
Compare 100 and 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}