Evaluate
\frac{1424}{5}=284.8
Factor
\frac{2 ^ {4} \cdot 89}{5} = 284\frac{4}{5} = 284.8
Share
Copied to clipboard
\frac{\frac{444+1}{4}\times \frac{5\times 3+1}{3}}{\frac{25}{12}}
Multiply 111 and 4 to get 444.
\frac{\frac{445}{4}\times \frac{5\times 3+1}{3}}{\frac{25}{12}}
Add 444 and 1 to get 445.
\frac{\frac{445}{4}\times \frac{15+1}{3}}{\frac{25}{12}}
Multiply 5 and 3 to get 15.
\frac{\frac{445}{4}\times \frac{16}{3}}{\frac{25}{12}}
Add 15 and 1 to get 16.
\frac{\frac{445\times 16}{4\times 3}}{\frac{25}{12}}
Multiply \frac{445}{4} times \frac{16}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7120}{12}}{\frac{25}{12}}
Do the multiplications in the fraction \frac{445\times 16}{4\times 3}.
\frac{\frac{1780}{3}}{\frac{25}{12}}
Reduce the fraction \frac{7120}{12} to lowest terms by extracting and canceling out 4.
\frac{1780}{3}\times \frac{12}{25}
Divide \frac{1780}{3} by \frac{25}{12} by multiplying \frac{1780}{3} by the reciprocal of \frac{25}{12}.
\frac{1780\times 12}{3\times 25}
Multiply \frac{1780}{3} times \frac{12}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{21360}{75}
Do the multiplications in the fraction \frac{1780\times 12}{3\times 25}.
\frac{1424}{5}
Reduce the fraction \frac{21360}{75} to lowest terms by extracting and canceling out 15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}