Evaluate
\frac{23}{5}=4.6
Factor
\frac{23}{5} = 4\frac{3}{5} = 4.6
Share
Copied to clipboard
\begin{array}{l}\phantom{240)}\phantom{1}\\240\overline{)1104}\\\end{array}
Use the 1^{st} digit 1 from dividend 1104
\begin{array}{l}\phantom{240)}0\phantom{2}\\240\overline{)1104}\\\end{array}
Since 1 is less than 240, use the next digit 1 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{240)}0\phantom{3}\\240\overline{)1104}\\\end{array}
Use the 2^{nd} digit 1 from dividend 1104
\begin{array}{l}\phantom{240)}00\phantom{4}\\240\overline{)1104}\\\end{array}
Since 11 is less than 240, use the next digit 0 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{240)}00\phantom{5}\\240\overline{)1104}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1104
\begin{array}{l}\phantom{240)}000\phantom{6}\\240\overline{)1104}\\\end{array}
Since 110 is less than 240, use the next digit 4 from dividend 1104 and add 0 to the quotient
\begin{array}{l}\phantom{240)}000\phantom{7}\\240\overline{)1104}\\\end{array}
Use the 4^{th} digit 4 from dividend 1104
\begin{array}{l}\phantom{240)}0004\phantom{8}\\240\overline{)1104}\\\phantom{240)}\underline{\phantom{9}960\phantom{}}\\\phantom{240)9}144\\\end{array}
Find closest multiple of 240 to 1104. We see that 4 \times 240 = 960 is the nearest. Now subtract 960 from 1104 to get reminder 144. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }144
Since 144 is less than 240, stop the division. The reminder is 144. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}