Solve for n
n=4
n=11
Share
Copied to clipboard
110\times 2=n\left(35+40-5n\right)
Multiply both sides by 2.
220=n\left(35+40-5n\right)
Multiply 110 and 2 to get 220.
220=n\left(75-5n\right)
Add 35 and 40 to get 75.
220=75n-5n^{2}
Use the distributive property to multiply n by 75-5n.
75n-5n^{2}=220
Swap sides so that all variable terms are on the left hand side.
75n-5n^{2}-220=0
Subtract 220 from both sides.
-5n^{2}+75n-220=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-75±\sqrt{75^{2}-4\left(-5\right)\left(-220\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, 75 for b, and -220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-75±\sqrt{5625-4\left(-5\right)\left(-220\right)}}{2\left(-5\right)}
Square 75.
n=\frac{-75±\sqrt{5625+20\left(-220\right)}}{2\left(-5\right)}
Multiply -4 times -5.
n=\frac{-75±\sqrt{5625-4400}}{2\left(-5\right)}
Multiply 20 times -220.
n=\frac{-75±\sqrt{1225}}{2\left(-5\right)}
Add 5625 to -4400.
n=\frac{-75±35}{2\left(-5\right)}
Take the square root of 1225.
n=\frac{-75±35}{-10}
Multiply 2 times -5.
n=-\frac{40}{-10}
Now solve the equation n=\frac{-75±35}{-10} when ± is plus. Add -75 to 35.
n=4
Divide -40 by -10.
n=-\frac{110}{-10}
Now solve the equation n=\frac{-75±35}{-10} when ± is minus. Subtract 35 from -75.
n=11
Divide -110 by -10.
n=4 n=11
The equation is now solved.
110\times 2=n\left(35+40-5n\right)
Multiply both sides by 2.
220=n\left(35+40-5n\right)
Multiply 110 and 2 to get 220.
220=n\left(75-5n\right)
Add 35 and 40 to get 75.
220=75n-5n^{2}
Use the distributive property to multiply n by 75-5n.
75n-5n^{2}=220
Swap sides so that all variable terms are on the left hand side.
-5n^{2}+75n=220
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-5n^{2}+75n}{-5}=\frac{220}{-5}
Divide both sides by -5.
n^{2}+\frac{75}{-5}n=\frac{220}{-5}
Dividing by -5 undoes the multiplication by -5.
n^{2}-15n=\frac{220}{-5}
Divide 75 by -5.
n^{2}-15n=-44
Divide 220 by -5.
n^{2}-15n+\left(-\frac{15}{2}\right)^{2}=-44+\left(-\frac{15}{2}\right)^{2}
Divide -15, the coefficient of the x term, by 2 to get -\frac{15}{2}. Then add the square of -\frac{15}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-15n+\frac{225}{4}=-44+\frac{225}{4}
Square -\frac{15}{2} by squaring both the numerator and the denominator of the fraction.
n^{2}-15n+\frac{225}{4}=\frac{49}{4}
Add -44 to \frac{225}{4}.
\left(n-\frac{15}{2}\right)^{2}=\frac{49}{4}
Factor n^{2}-15n+\frac{225}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{15}{2}\right)^{2}}=\sqrt{\frac{49}{4}}
Take the square root of both sides of the equation.
n-\frac{15}{2}=\frac{7}{2} n-\frac{15}{2}=-\frac{7}{2}
Simplify.
n=11 n=4
Add \frac{15}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}