Solve for x
x\leq -5.6
Graph
Share
Copied to clipboard
11.5+4.5x+8.1\leq x
Use the distributive property to multiply 4.5 by x+1.8.
19.6+4.5x\leq x
Add 11.5 and 8.1 to get 19.6.
19.6+4.5x-x\leq 0
Subtract x from both sides.
19.6+3.5x\leq 0
Combine 4.5x and -x to get 3.5x.
3.5x\leq -19.6
Subtract 19.6 from both sides. Anything subtracted from zero gives its negation.
x\leq \frac{-19.6}{3.5}
Divide both sides by 3.5. Since 3.5 is positive, the inequality direction remains the same.
x\leq \frac{-196}{35}
Expand \frac{-19.6}{3.5} by multiplying both numerator and the denominator by 10.
x\leq -\frac{28}{5}
Reduce the fraction \frac{-196}{35} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}