Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

11n^{2}+75n-54=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
n=\frac{-75±\sqrt{75^{2}-4\times 11\left(-54\right)}}{2\times 11}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-75±\sqrt{5625-4\times 11\left(-54\right)}}{2\times 11}
Square 75.
n=\frac{-75±\sqrt{5625-44\left(-54\right)}}{2\times 11}
Multiply -4 times 11.
n=\frac{-75±\sqrt{5625+2376}}{2\times 11}
Multiply -44 times -54.
n=\frac{-75±\sqrt{8001}}{2\times 11}
Add 5625 to 2376.
n=\frac{-75±3\sqrt{889}}{2\times 11}
Take the square root of 8001.
n=\frac{-75±3\sqrt{889}}{22}
Multiply 2 times 11.
n=\frac{3\sqrt{889}-75}{22}
Now solve the equation n=\frac{-75±3\sqrt{889}}{22} when ± is plus. Add -75 to 3\sqrt{889}.
n=\frac{-3\sqrt{889}-75}{22}
Now solve the equation n=\frac{-75±3\sqrt{889}}{22} when ± is minus. Subtract 3\sqrt{889} from -75.
11n^{2}+75n-54=11\left(n-\frac{3\sqrt{889}-75}{22}\right)\left(n-\frac{-3\sqrt{889}-75}{22}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-75+3\sqrt{889}}{22} for x_{1} and \frac{-75-3\sqrt{889}}{22} for x_{2}.
x ^ 2 +\frac{75}{11}x -\frac{54}{11} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 11
r + s = -\frac{75}{11} rs = -\frac{54}{11}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{75}{22} - u s = -\frac{75}{22} + u
Two numbers r and s sum up to -\frac{75}{11} exactly when the average of the two numbers is \frac{1}{2}*-\frac{75}{11} = -\frac{75}{22}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{75}{22} - u) (-\frac{75}{22} + u) = -\frac{54}{11}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{54}{11}
\frac{5625}{484} - u^2 = -\frac{54}{11}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{54}{11}-\frac{5625}{484} = -\frac{8001}{484}
Simplify the expression by subtracting \frac{5625}{484} on both sides
u^2 = \frac{8001}{484} u = \pm\sqrt{\frac{8001}{484}} = \pm \frac{\sqrt{8001}}{22}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{75}{22} - \frac{\sqrt{8001}}{22} = -7.475 s = -\frac{75}{22} + \frac{\sqrt{8001}}{22} = 0.657
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.