Solve for x
x = -\frac{7}{3} = -2\frac{1}{3} \approx -2.333333333
x=7
Graph
Share
Copied to clipboard
\left(11-x\right)^{2}=\left(2\sqrt{\left(x-3\right)\left(x-6\right)}\right)^{2}
Square both sides of the equation.
121-22x+x^{2}=\left(2\sqrt{\left(x-3\right)\left(x-6\right)}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(11-x\right)^{2}.
121-22x+x^{2}=\left(2\sqrt{x^{2}-9x+18}\right)^{2}
Use the distributive property to multiply x-3 by x-6 and combine like terms.
121-22x+x^{2}=2^{2}\left(\sqrt{x^{2}-9x+18}\right)^{2}
Expand \left(2\sqrt{x^{2}-9x+18}\right)^{2}.
121-22x+x^{2}=4\left(\sqrt{x^{2}-9x+18}\right)^{2}
Calculate 2 to the power of 2 and get 4.
121-22x+x^{2}=4\left(x^{2}-9x+18\right)
Calculate \sqrt{x^{2}-9x+18} to the power of 2 and get x^{2}-9x+18.
121-22x+x^{2}=4x^{2}-36x+72
Use the distributive property to multiply 4 by x^{2}-9x+18.
121-22x+x^{2}-4x^{2}=-36x+72
Subtract 4x^{2} from both sides.
121-22x-3x^{2}=-36x+72
Combine x^{2} and -4x^{2} to get -3x^{2}.
121-22x-3x^{2}+36x=72
Add 36x to both sides.
121+14x-3x^{2}=72
Combine -22x and 36x to get 14x.
121+14x-3x^{2}-72=0
Subtract 72 from both sides.
49+14x-3x^{2}=0
Subtract 72 from 121 to get 49.
-3x^{2}+14x+49=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=14 ab=-3\times 49=-147
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+49. To find a and b, set up a system to be solved.
-1,147 -3,49 -7,21
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -147.
-1+147=146 -3+49=46 -7+21=14
Calculate the sum for each pair.
a=21 b=-7
The solution is the pair that gives sum 14.
\left(-3x^{2}+21x\right)+\left(-7x+49\right)
Rewrite -3x^{2}+14x+49 as \left(-3x^{2}+21x\right)+\left(-7x+49\right).
3x\left(-x+7\right)+7\left(-x+7\right)
Factor out 3x in the first and 7 in the second group.
\left(-x+7\right)\left(3x+7\right)
Factor out common term -x+7 by using distributive property.
x=7 x=-\frac{7}{3}
To find equation solutions, solve -x+7=0 and 3x+7=0.
11-7=2\sqrt{\left(7-3\right)\left(7-6\right)}
Substitute 7 for x in the equation 11-x=2\sqrt{\left(x-3\right)\left(x-6\right)}.
4=4
Simplify. The value x=7 satisfies the equation.
11-\left(-\frac{7}{3}\right)=2\sqrt{\left(-\frac{7}{3}-3\right)\left(-\frac{7}{3}-6\right)}
Substitute -\frac{7}{3} for x in the equation 11-x=2\sqrt{\left(x-3\right)\left(x-6\right)}.
\frac{40}{3}=\frac{40}{3}
Simplify. The value x=-\frac{7}{3} satisfies the equation.
x=7 x=-\frac{7}{3}
List all solutions of 11-x=2\sqrt{\left(x-6\right)\left(x-3\right)}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}