Evaluate
-\frac{9a}{2}
Expand
-\frac{9a}{2}
Share
Copied to clipboard
\frac{11\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Expand \left(-\frac{2}{3}a^{2}\right)^{2}.
\frac{11\left(-\frac{2}{3}\right)^{2}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{11\times \frac{4}{9}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{44}{9}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Multiply 11 and \frac{4}{9} to get \frac{44}{9}.
\frac{\frac{44}{9}a^{4}}{\left(-\frac{2}{3}\right)^{3}a^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Expand \left(-\frac{2}{3}a\right)^{3}.
\frac{\frac{44}{9}a^{4}}{-\frac{8}{27}a^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
\frac{\frac{44}{9}a}{-\frac{8}{27}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Cancel out a^{3} in both numerator and denominator.
\frac{\frac{44}{9}a\times 27}{-8}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Divide \frac{44}{9}a by -\frac{8}{27} by multiplying \frac{44}{9}a by the reciprocal of -\frac{8}{27}.
\frac{132a}{-8}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Multiply \frac{44}{9} and 27 to get 132.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Divide 132a by -8 to get -\frac{33}{2}a.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}\right)^{2}a^{2}b^{2}}
Expand \left(-\frac{1}{3}ab\right)^{2}.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\frac{1}{9}a^{2}b^{2}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
-\frac{33}{2}a+\frac{\frac{4}{3}a}{\frac{1}{9}}
Cancel out a^{2}b^{2} in both numerator and denominator.
-\frac{33}{2}a+\frac{4}{3}a\times 9
Divide \frac{4}{3}a by \frac{1}{9} by multiplying \frac{4}{3}a by the reciprocal of \frac{1}{9}.
-\frac{33}{2}a+12a
Multiply \frac{4}{3} and 9 to get 12.
-\frac{9}{2}a
Combine -\frac{33}{2}a and 12a to get -\frac{9}{2}a.
\frac{11\left(-\frac{2}{3}\right)^{2}\left(a^{2}\right)^{2}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Expand \left(-\frac{2}{3}a^{2}\right)^{2}.
\frac{11\left(-\frac{2}{3}\right)^{2}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{11\times \frac{4}{9}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Calculate -\frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{\frac{44}{9}a^{4}}{\left(-\frac{2}{3}a\right)^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Multiply 11 and \frac{4}{9} to get \frac{44}{9}.
\frac{\frac{44}{9}a^{4}}{\left(-\frac{2}{3}\right)^{3}a^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Expand \left(-\frac{2}{3}a\right)^{3}.
\frac{\frac{44}{9}a^{4}}{-\frac{8}{27}a^{3}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Calculate -\frac{2}{3} to the power of 3 and get -\frac{8}{27}.
\frac{\frac{44}{9}a}{-\frac{8}{27}}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Cancel out a^{3} in both numerator and denominator.
\frac{\frac{44}{9}a\times 27}{-8}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Divide \frac{44}{9}a by -\frac{8}{27} by multiplying \frac{44}{9}a by the reciprocal of -\frac{8}{27}.
\frac{132a}{-8}+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Multiply \frac{44}{9} and 27 to get 132.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}ab\right)^{2}}
Divide 132a by -8 to get -\frac{33}{2}a.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\left(-\frac{1}{3}\right)^{2}a^{2}b^{2}}
Expand \left(-\frac{1}{3}ab\right)^{2}.
-\frac{33}{2}a+\frac{\frac{4}{3}a^{3}b^{2}}{\frac{1}{9}a^{2}b^{2}}
Calculate -\frac{1}{3} to the power of 2 and get \frac{1}{9}.
-\frac{33}{2}a+\frac{\frac{4}{3}a}{\frac{1}{9}}
Cancel out a^{2}b^{2} in both numerator and denominator.
-\frac{33}{2}a+\frac{4}{3}a\times 9
Divide \frac{4}{3}a by \frac{1}{9} by multiplying \frac{4}{3}a by the reciprocal of \frac{1}{9}.
-\frac{33}{2}a+12a
Multiply \frac{4}{3} and 9 to get 12.
-\frac{9}{2}a
Combine -\frac{33}{2}a and 12a to get -\frac{9}{2}a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}