Evaluate
\frac{27921}{101}\approx 276.445544554
Factor
\frac{3 \cdot 41 \cdot 227}{101} = 276\frac{45}{101} = 276.44554455445547
Share
Copied to clipboard
275+\frac{\frac{11^{2}}{1111}\left(25+11^{2}\right)}{11}
Multiply 11 and 25 to get 275.
275+\frac{\frac{121}{1111}\left(25+11^{2}\right)}{11}
Calculate 11 to the power of 2 and get 121.
275+\frac{\frac{11}{101}\left(25+11^{2}\right)}{11}
Reduce the fraction \frac{121}{1111} to lowest terms by extracting and canceling out 11.
275+\frac{\frac{11}{101}\left(25+121\right)}{11}
Calculate 11 to the power of 2 and get 121.
275+\frac{\frac{11}{101}\times 146}{11}
Add 25 and 121 to get 146.
275+\frac{\frac{11\times 146}{101}}{11}
Express \frac{11}{101}\times 146 as a single fraction.
275+\frac{\frac{1606}{101}}{11}
Multiply 11 and 146 to get 1606.
275+\frac{1606}{101\times 11}
Express \frac{\frac{1606}{101}}{11} as a single fraction.
275+\frac{1606}{1111}
Multiply 101 and 11 to get 1111.
275+\frac{146}{101}
Reduce the fraction \frac{1606}{1111} to lowest terms by extracting and canceling out 11.
\frac{27775}{101}+\frac{146}{101}
Convert 275 to fraction \frac{27775}{101}.
\frac{27775+146}{101}
Since \frac{27775}{101} and \frac{146}{101} have the same denominator, add them by adding their numerators.
\frac{27921}{101}
Add 27775 and 146 to get 27921.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}