Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

factor(11-11a-a^{2})
Combine a and -12a to get -11a.
-a^{2}-11a+11=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
a=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\left(-1\right)\times 11}}{2\left(-1\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-11\right)±\sqrt{121-4\left(-1\right)\times 11}}{2\left(-1\right)}
Square -11.
a=\frac{-\left(-11\right)±\sqrt{121+4\times 11}}{2\left(-1\right)}
Multiply -4 times -1.
a=\frac{-\left(-11\right)±\sqrt{121+44}}{2\left(-1\right)}
Multiply 4 times 11.
a=\frac{-\left(-11\right)±\sqrt{165}}{2\left(-1\right)}
Add 121 to 44.
a=\frac{11±\sqrt{165}}{2\left(-1\right)}
The opposite of -11 is 11.
a=\frac{11±\sqrt{165}}{-2}
Multiply 2 times -1.
a=\frac{\sqrt{165}+11}{-2}
Now solve the equation a=\frac{11±\sqrt{165}}{-2} when ± is plus. Add 11 to \sqrt{165}.
a=\frac{-\sqrt{165}-11}{2}
Divide 11+\sqrt{165} by -2.
a=\frac{11-\sqrt{165}}{-2}
Now solve the equation a=\frac{11±\sqrt{165}}{-2} when ± is minus. Subtract \sqrt{165} from 11.
a=\frac{\sqrt{165}-11}{2}
Divide 11-\sqrt{165} by -2.
-a^{2}-11a+11=-\left(a-\frac{-\sqrt{165}-11}{2}\right)\left(a-\frac{\sqrt{165}-11}{2}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-11-\sqrt{165}}{2} for x_{1} and \frac{-11+\sqrt{165}}{2} for x_{2}.
11-11a-a^{2}
Combine a and -12a to get -11a.