Evaluate
\frac{5495}{62}\approx 88.629032258
Factor
\frac{5 \cdot 7 \cdot 157}{2 \cdot 31} = 88\frac{39}{62} = 88.62903225806451
Share
Copied to clipboard
\begin{array}{l}\phantom{1240)}\phantom{1}\\1240\overline{)109900}\\\end{array}
Use the 1^{st} digit 1 from dividend 109900
\begin{array}{l}\phantom{1240)}0\phantom{2}\\1240\overline{)109900}\\\end{array}
Since 1 is less than 1240, use the next digit 0 from dividend 109900 and add 0 to the quotient
\begin{array}{l}\phantom{1240)}0\phantom{3}\\1240\overline{)109900}\\\end{array}
Use the 2^{nd} digit 0 from dividend 109900
\begin{array}{l}\phantom{1240)}00\phantom{4}\\1240\overline{)109900}\\\end{array}
Since 10 is less than 1240, use the next digit 9 from dividend 109900 and add 0 to the quotient
\begin{array}{l}\phantom{1240)}00\phantom{5}\\1240\overline{)109900}\\\end{array}
Use the 3^{rd} digit 9 from dividend 109900
\begin{array}{l}\phantom{1240)}000\phantom{6}\\1240\overline{)109900}\\\end{array}
Since 109 is less than 1240, use the next digit 9 from dividend 109900 and add 0 to the quotient
\begin{array}{l}\phantom{1240)}000\phantom{7}\\1240\overline{)109900}\\\end{array}
Use the 4^{th} digit 9 from dividend 109900
\begin{array}{l}\phantom{1240)}0000\phantom{8}\\1240\overline{)109900}\\\end{array}
Since 1099 is less than 1240, use the next digit 0 from dividend 109900 and add 0 to the quotient
\begin{array}{l}\phantom{1240)}0000\phantom{9}\\1240\overline{)109900}\\\end{array}
Use the 5^{th} digit 0 from dividend 109900
\begin{array}{l}\phantom{1240)}00008\phantom{10}\\1240\overline{)109900}\\\phantom{1240)}\underline{\phantom{9}9920\phantom{9}}\\\phantom{1240)9}1070\\\end{array}
Find closest multiple of 1240 to 10990. We see that 8 \times 1240 = 9920 is the nearest. Now subtract 9920 from 10990 to get reminder 1070. Add 8 to quotient.
\begin{array}{l}\phantom{1240)}00008\phantom{11}\\1240\overline{)109900}\\\phantom{1240)}\underline{\phantom{9}9920\phantom{9}}\\\phantom{1240)9}10700\\\end{array}
Use the 6^{th} digit 0 from dividend 109900
\begin{array}{l}\phantom{1240)}000088\phantom{12}\\1240\overline{)109900}\\\phantom{1240)}\underline{\phantom{9}9920\phantom{9}}\\\phantom{1240)9}10700\\\phantom{1240)}\underline{\phantom{99}9920\phantom{}}\\\phantom{1240)999}780\\\end{array}
Find closest multiple of 1240 to 10700. We see that 8 \times 1240 = 9920 is the nearest. Now subtract 9920 from 10700 to get reminder 780. Add 8 to quotient.
\text{Quotient: }88 \text{Reminder: }780
Since 780 is less than 1240, stop the division. The reminder is 780. The topmost line 000088 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 88.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}