Evaluate
\frac{94004}{81}\approx 1160.543209877
Factor
\frac{2 ^ {2} \cdot 71 \cdot 331}{3 ^ {4}} = 1160\frac{44}{81} = 1160.5432098765432
Share
Copied to clipboard
1063-\left(-\frac{17}{81}\right)+\frac{76\times 9+192}{9}
Subtract 35 from 1098 to get 1063.
1063+\frac{17}{81}+\frac{76\times 9+192}{9}
The opposite of -\frac{17}{81} is \frac{17}{81}.
\frac{86103}{81}+\frac{17}{81}+\frac{76\times 9+192}{9}
Convert 1063 to fraction \frac{86103}{81}.
\frac{86103+17}{81}+\frac{76\times 9+192}{9}
Since \frac{86103}{81} and \frac{17}{81} have the same denominator, add them by adding their numerators.
\frac{86120}{81}+\frac{76\times 9+192}{9}
Add 86103 and 17 to get 86120.
\frac{86120}{81}+\frac{684+192}{9}
Multiply 76 and 9 to get 684.
\frac{86120}{81}+\frac{876}{9}
Add 684 and 192 to get 876.
\frac{86120}{81}+\frac{292}{3}
Reduce the fraction \frac{876}{9} to lowest terms by extracting and canceling out 3.
\frac{86120}{81}+\frac{7884}{81}
Least common multiple of 81 and 3 is 81. Convert \frac{86120}{81} and \frac{292}{3} to fractions with denominator 81.
\frac{86120+7884}{81}
Since \frac{86120}{81} and \frac{7884}{81} have the same denominator, add them by adding their numerators.
\frac{94004}{81}
Add 86120 and 7884 to get 94004.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}