Evaluate
\frac{109657}{57}\approx 1923.807017544
Factor
\frac{53 \cdot 2069}{3 \cdot 19} = 1923\frac{46}{57} = 1923.8070175438597
Share
Copied to clipboard
\begin{array}{l}\phantom{57)}\phantom{1}\\57\overline{)109657}\\\end{array}
Use the 1^{st} digit 1 from dividend 109657
\begin{array}{l}\phantom{57)}0\phantom{2}\\57\overline{)109657}\\\end{array}
Since 1 is less than 57, use the next digit 0 from dividend 109657 and add 0 to the quotient
\begin{array}{l}\phantom{57)}0\phantom{3}\\57\overline{)109657}\\\end{array}
Use the 2^{nd} digit 0 from dividend 109657
\begin{array}{l}\phantom{57)}00\phantom{4}\\57\overline{)109657}\\\end{array}
Since 10 is less than 57, use the next digit 9 from dividend 109657 and add 0 to the quotient
\begin{array}{l}\phantom{57)}00\phantom{5}\\57\overline{)109657}\\\end{array}
Use the 3^{rd} digit 9 from dividend 109657
\begin{array}{l}\phantom{57)}001\phantom{6}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}52\\\end{array}
Find closest multiple of 57 to 109. We see that 1 \times 57 = 57 is the nearest. Now subtract 57 from 109 to get reminder 52. Add 1 to quotient.
\begin{array}{l}\phantom{57)}001\phantom{7}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\end{array}
Use the 4^{th} digit 6 from dividend 109657
\begin{array}{l}\phantom{57)}0019\phantom{8}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\phantom{57)}\underline{\phantom{9}513\phantom{99}}\\\phantom{57)99}13\\\end{array}
Find closest multiple of 57 to 526. We see that 9 \times 57 = 513 is the nearest. Now subtract 513 from 526 to get reminder 13. Add 9 to quotient.
\begin{array}{l}\phantom{57)}0019\phantom{9}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\phantom{57)}\underline{\phantom{9}513\phantom{99}}\\\phantom{57)99}135\\\end{array}
Use the 5^{th} digit 5 from dividend 109657
\begin{array}{l}\phantom{57)}00192\phantom{10}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\phantom{57)}\underline{\phantom{9}513\phantom{99}}\\\phantom{57)99}135\\\phantom{57)}\underline{\phantom{99}114\phantom{9}}\\\phantom{57)999}21\\\end{array}
Find closest multiple of 57 to 135. We see that 2 \times 57 = 114 is the nearest. Now subtract 114 from 135 to get reminder 21. Add 2 to quotient.
\begin{array}{l}\phantom{57)}00192\phantom{11}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\phantom{57)}\underline{\phantom{9}513\phantom{99}}\\\phantom{57)99}135\\\phantom{57)}\underline{\phantom{99}114\phantom{9}}\\\phantom{57)999}217\\\end{array}
Use the 6^{th} digit 7 from dividend 109657
\begin{array}{l}\phantom{57)}001923\phantom{12}\\57\overline{)109657}\\\phantom{57)}\underline{\phantom{9}57\phantom{999}}\\\phantom{57)9}526\\\phantom{57)}\underline{\phantom{9}513\phantom{99}}\\\phantom{57)99}135\\\phantom{57)}\underline{\phantom{99}114\phantom{9}}\\\phantom{57)999}217\\\phantom{57)}\underline{\phantom{999}171\phantom{}}\\\phantom{57)9999}46\\\end{array}
Find closest multiple of 57 to 217. We see that 3 \times 57 = 171 is the nearest. Now subtract 171 from 217 to get reminder 46. Add 3 to quotient.
\text{Quotient: }1923 \text{Reminder: }46
Since 46 is less than 57, stop the division. The reminder is 46. The topmost line 001923 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1923.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}