Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1080}\\\end{array}
Use the 1^{st} digit 1 from dividend 1080
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1080}\\\end{array}
Since 1 is less than 180, use the next digit 0 from dividend 1080 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1080}\\\end{array}
Use the 2^{nd} digit 0 from dividend 1080
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1080}\\\end{array}
Since 10 is less than 180, use the next digit 8 from dividend 1080 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1080}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1080
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1080}\\\end{array}
Since 108 is less than 180, use the next digit 0 from dividend 1080 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1080}\\\end{array}
Use the 4^{th} digit 0 from dividend 1080
\begin{array}{l}\phantom{180)}0006\phantom{8}\\180\overline{)1080}\\\phantom{180)}\underline{\phantom{}1080\phantom{}}\\\phantom{180)9999}0\\\end{array}
Find closest multiple of 180 to 1080. We see that 6 \times 180 = 1080 is the nearest. Now subtract 1080 from 1080 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 180, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}