Evaluate
\frac{54}{29}\approx 1.862068966
Factor
\frac{2 \cdot 3 ^ {3}}{29} = 1\frac{25}{29} = 1.8620689655172413
Share
Copied to clipboard
\begin{array}{l}\phantom{58)}\phantom{1}\\58\overline{)108}\\\end{array}
Use the 1^{st} digit 1 from dividend 108
\begin{array}{l}\phantom{58)}0\phantom{2}\\58\overline{)108}\\\end{array}
Since 1 is less than 58, use the next digit 0 from dividend 108 and add 0 to the quotient
\begin{array}{l}\phantom{58)}0\phantom{3}\\58\overline{)108}\\\end{array}
Use the 2^{nd} digit 0 from dividend 108
\begin{array}{l}\phantom{58)}00\phantom{4}\\58\overline{)108}\\\end{array}
Since 10 is less than 58, use the next digit 8 from dividend 108 and add 0 to the quotient
\begin{array}{l}\phantom{58)}00\phantom{5}\\58\overline{)108}\\\end{array}
Use the 3^{rd} digit 8 from dividend 108
\begin{array}{l}\phantom{58)}001\phantom{6}\\58\overline{)108}\\\phantom{58)}\underline{\phantom{9}58\phantom{}}\\\phantom{58)9}50\\\end{array}
Find closest multiple of 58 to 108. We see that 1 \times 58 = 58 is the nearest. Now subtract 58 from 108 to get reminder 50. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }50
Since 50 is less than 58, stop the division. The reminder is 50. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}