Evaluate
\frac{107}{56}\approx 1.910714286
Factor
\frac{107}{2 ^ {3} \cdot 7} = 1\frac{51}{56} = 1.9107142857142858
Share
Copied to clipboard
\begin{array}{l}\phantom{56)}\phantom{1}\\56\overline{)107}\\\end{array}
Use the 1^{st} digit 1 from dividend 107
\begin{array}{l}\phantom{56)}0\phantom{2}\\56\overline{)107}\\\end{array}
Since 1 is less than 56, use the next digit 0 from dividend 107 and add 0 to the quotient
\begin{array}{l}\phantom{56)}0\phantom{3}\\56\overline{)107}\\\end{array}
Use the 2^{nd} digit 0 from dividend 107
\begin{array}{l}\phantom{56)}00\phantom{4}\\56\overline{)107}\\\end{array}
Since 10 is less than 56, use the next digit 7 from dividend 107 and add 0 to the quotient
\begin{array}{l}\phantom{56)}00\phantom{5}\\56\overline{)107}\\\end{array}
Use the 3^{rd} digit 7 from dividend 107
\begin{array}{l}\phantom{56)}001\phantom{6}\\56\overline{)107}\\\phantom{56)}\underline{\phantom{9}56\phantom{}}\\\phantom{56)9}51\\\end{array}
Find closest multiple of 56 to 107. We see that 1 \times 56 = 56 is the nearest. Now subtract 56 from 107 to get reminder 51. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }51
Since 51 is less than 56, stop the division. The reminder is 51. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}